Câu hỏi:
27/02/2023 268Cho \[\Delta ABC\]vuông tại A. Gọi M là trung điểm của BC. Từ M hạ MP vuông góc với AB, \[{\rm{P }} \in {\rm{ AB}}\], \(MQ \bot AC\left( {Q \in AC} \right)\) R đối xứng M qua P
a, AQMP là hình gì ? Vì sao?
b, AMBR là hình gì ? Vì sao?
c, Điều kiện để tâm giác ANG để AQM P là hình vuông
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
a) Ta có: \(\Delta ABC\)vuông tại A
\( \Rightarrow \widehat {\rm{A}}{\rm{ = 9}}{{\rm{0}}^{\rm{o}}}\)
MP vuông góc AB \( \Rightarrow \widehat {\rm{P}}{\rm{ = 9}}{{\rm{0}}^{\rm{o}}}\)
MQ vuông góc AC \[ \Rightarrow \widehat {\rm{Q}}{\rm{ = 9}}{{\rm{0}}^{\rm{o}}}\]
Ta có: \[\widehat {\rm{A}}{\rm{ = }}\widehat {\rm{P}}{\rm{ = }}\widehat {\rm{Q}}{\rm{ = 9}}{{\rm{0}}^{\rm{o}}}\]
Vậy AQMP là hình chữ nhật
b) Ta có: \(\Delta ABC\)vuông; AM là trung tuyến \[ \Rightarrow {\rm{AM = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{BC = MB}}\]
Vậy \(\Delta AMB\)cân mà MP là đường cao
→ MP cũng là trung tuyến
→ AP = BP.
Ta có: AP = BP; MP = PR (R đối xứng với M qua P); \[MP \bot AB\](hay\[MR \bot AB\])
→ AMBR là hình thoi
c) Để AQMP là hình vuông thì:
\[\widehat {{\rm{BAM}}}{\rm{ = }}\widehat {{\rm{ MAC}}}\]
hay AM là phân giác mà AM là trung tuyến
\( \Rightarrow \Delta ABC\)vuông cân tại A.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
I là trung điểm của \[{\rm{MK}} \Rightarrow \overrightarrow {{\rm{IM}}} {\rm{ + }}\overrightarrow {{\rm{IK}}} {\rm{ = \vec 0}}\]
\[{\rm{NK = }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{NP}} \Rightarrow \overrightarrow {{\rm{NK}}} {\rm{ = }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{NP}}} \]
\[\overrightarrow {{\rm{IK}}} {\rm{ = }}\overrightarrow {{\rm{IN}}} {\rm{ + }}\overrightarrow {{\rm{NK}}} {\rm{ = }}\overrightarrow {{\rm{IN}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{NP}}} {\rm{ = }}\overrightarrow {{\rm{IN}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{NI}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{IP}}} {\rm{ = }}\overrightarrow {{\rm{IN}}} {\rm{ - }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{IP}}} {\rm{ = }}\frac{{\rm{3}}}{{\rm{4}}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{IP}}} \]
\[ \Rightarrow \overrightarrow {{\rm{IM}}} {\rm{ + }}\frac{{\rm{3}}}{{\rm{4}}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}\overrightarrow {{\rm{IP}}} {\rm{ = \vec 0}}\]
\[ \Rightarrow {\rm{4}}\overrightarrow {{\rm{IM}}} {\rm{ + 3}}\overrightarrow {{\rm{IN}}} {\rm{ + }}\overrightarrow {{\rm{IP}}} {\rm{ = \vec 0}}\]
Chọn C
Lời giải
O là số chính phương. Vì số chính phương là số có thể lấy căn bậc 2. Kết quả phải là số nguyên. Căn bậc 2 của 0 = 0
1 là số chính phương. Vì số chính phương là số có thể lấy căn bậc 2. Kết quả phải là số nguyên. Căn bậc 2 của 1 = 1
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận