Câu hỏi:
27/02/2023 427Cho các số thực dương x, y, z thỏa mãn \[{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}{\rm{ = 3xyz}}{\rm{.}}\]
Tìm giá trị lớn nhất của biểu thức: \[{\rm{P = }}\frac{{{{\rm{x}}^{\rm{2}}}}}{{{{\rm{x}}^{\rm{4}}}{\rm{ + yz}}}}{\rm{ + }}\frac{{{{\rm{y}}^{\rm{2}}}}}{{{{\rm{y}}^{\rm{4}}}{\rm{ + xz}}}}{\rm{ + }}\frac{{{{\rm{z}}^{\rm{2}}}}}{{{{\rm{z}}^{\rm{4}}}{\rm{ + xy}}}}{\rm{.}}\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\[{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}{\rm{ = 3xyz }} \Rightarrow \frac{{\rm{x}}}{{{\rm{yz}}}}{\rm{ + }}\frac{{\rm{y}}}{{{\rm{xz}}}}{\rm{ + }}\frac{{\rm{z}}}{{{\rm{xy}}}}{\rm{ = 3}}\]
Áp dụng bất đẳng thức Cô – si cho hai số dương \[\frac{{\rm{x}}}{{{\rm{yz}}}}{\rm{; }}\frac{{\rm{y}}}{{{\rm{zx}}}}\]ta có: \[\frac{{\rm{x}}}{{{\rm{yz}}}}{\rm{ + }}\frac{{\rm{y}}}{{{\rm{zx}}}} \ge \,\,{\rm{2}}\sqrt {\frac{{\rm{x}}}{{{\rm{yz}}}}{\rm{ }}{\rm{. }}\frac{{\rm{y}}}{{{\rm{zx}}}}} {\rm{ = }}\frac{{\rm{2}}}{{\rm{z}}}\]
Tương tự ta cũng có \[\frac{{\rm{y}}}{{{\rm{zx}}}}{\rm{ + }}\frac{{\rm{z}}}{{{\rm{xy}}}}\, \ge \,\,\frac{{\rm{2}}}{{\rm{x}}}{\rm{; }}\frac{{\rm{z}}}{{{\rm{xy}}}}{\rm{ + }}\frac{{\rm{x}}}{{{\rm{yz}}}}\, \ge \,\,\frac{{\rm{2}}}{{\rm{y}}}\]
\[ \Rightarrow \left( {\frac{{\rm{x}}}{{{\rm{yz}}}}{\rm{ + }}\frac{{\rm{y}}}{{{\rm{zx}}}}} \right){\rm{ + }}\left( {\frac{{\rm{y}}}{{{\rm{zx}}}}{\rm{ + }}\frac{{\rm{z}}}{{{\rm{xy}}}}} \right){\rm{ + }}\left( {\frac{{\rm{z}}}{{{\rm{xy}}}}{\rm{ + }}\frac{{\rm{x}}}{{{\rm{yz}}}}} \right)\, \ge \frac{{\rm{2}}}{{\rm{z}}}{\rm{ + }}\frac{{\rm{2}}}{{\rm{x}}}{\rm{ + }}\frac{{\rm{2}}}{{\rm{y}}}\]
\[\begin{array}{l} \Rightarrow \frac{{\rm{x}}}{{{\rm{yz}}}}{\rm{ + }}\frac{{\rm{y}}}{{{\rm{zx}}}}{\rm{ + }}\frac{{\rm{z}}}{{{\rm{xy}}}} \ge \frac{{\rm{1}}}{{\rm{x}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{y}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{z}}}\\ \Rightarrow \frac{{\rm{1}}}{{\rm{x}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{y}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{z}}} \le {\rm{3}}\end{array}\]
Lại có: \[{{\rm{x}}^{\rm{4}}}{\rm{ + yz}} \ge {\rm{2}}\sqrt {{{\rm{x}}^{\rm{4}}}{\rm{yz}}} {\rm{ = 2}}{{\rm{x}}^{\rm{2}}}\sqrt {{\rm{yz}}} \]
\[ \Rightarrow \frac{{{{\rm{x}}^{\rm{2}}}}}{{{{\rm{x}}^{\rm{4}}}{\rm{ + yz}}}} \le \frac{{\rm{1}}}{{{\rm{2}}\sqrt {{\rm{yz}}} }}{\rm{ = }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{ }}{\rm{. 2 }}{\rm{. }}\frac{{\rm{1}}}{{\sqrt {\rm{y}} }}{\rm{ }}{\rm{. }}\frac{{\rm{1}}}{{\sqrt {\rm{z}} }} \le \frac{{\rm{1}}}{{\rm{4}}}\left( {\frac{{\rm{1}}}{{\rm{y}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{z}}}} \right)\]
Tương tự \[\frac{{{{\rm{y}}^{\rm{2}}}}}{{{{\rm{y}}^{\rm{4}}}{\rm{ + xz}}}} \le \frac{{\rm{1}}}{{\rm{4}}}\left( {\frac{{\rm{1}}}{{\rm{x}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{z}}}} \right){\rm{; }}\frac{{{{\rm{z}}^{\rm{2}}}}}{{{{\rm{z}}^{\rm{4}}}{\rm{ + xy}}}} \le \frac{{\rm{1}}}{{\rm{4}}}\left( {\frac{{\rm{1}}}{{\rm{x}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{y}}}} \right)\]
Suy ra\[{\rm{P = }}\frac{{{{\rm{x}}^{\rm{2}}}}}{{{{\rm{x}}^{\rm{4}}}{\rm{ + yz}}}}{\rm{ + }}\frac{{{{\rm{y}}^{\rm{2}}}}}{{{{\rm{y}}^{\rm{4}}}{\rm{ + xz}}}}{\rm{ + }}\frac{{{{\rm{z}}^{\rm{2}}}}}{{{{\rm{z}}^{\rm{4}}}{\rm{ + xy}}}} \le \frac{{\rm{1}}}{{\rm{4}}}\left( {\frac{{\rm{2}}}{{\rm{x}}}{\rm{ + }}\frac{{\rm{2}}}{{\rm{y}}}{\rm{ + }}\frac{{\rm{2}}}{{\rm{z}}}} \right){\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\left( {\frac{{\rm{1}}}{{\rm{x}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{y}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{z}}}} \right) \le \frac{{\rm{3}}}{{\rm{2}}}\]
\[ \Rightarrow {\rm{P}} \le \frac{{\rm{3}}}{{\rm{2}}}\]
Dấu “=” xảy ra khi x = y = z = 1.
Vậy \[{{\rm{P}}_{{\rm{max}}}}{\rm{ = }}\frac{{\rm{3}}}{{\rm{2}}}\] khi x = y = z = 1.
Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Cho nửa đường tròn (O) đường kính AB = 2R. Vẽ đường thẳng d là tiếp tuyến của (O) tại B. Trên cung AB lấy điểm M tùy ý tia AM cắt d tại N. Gọi C là trung điểm của AM tia CO cắt d tại D.
a ) CMR OBNC nội tiếp.
b ) CMR NO vuông góc với AD.
c ) CMR CA . CN = CO . CD
d ) Xác định vị trí điểm M để (2AM + AN ) đạt GTNN.
Câu 7:
Cho hàm số y = x2 và y = mx + 4, với m là tham số.
a) Khi m = 3, tìm tọa độ các giao điểm của hai đồ thị hàm số trên.
b) Chứng minh rằng với mọi giá trị m, đồ thị của hai hàm số đã cho luôn cắt nhau tại hai điểm phân biệt A1(x1,y1); A2 (x1 ,y2). Tìm tất cả các giá trị của m sao cho (y1)2 + (y2)2 = 72.
về câu hỏi!