Câu hỏi:

12/07/2024 966

Vẽ trên cùng một mặt phẳng tọa độ Oxy đồ thị của các hàm số sau: \[y = \frac{1}{2}x\](d1) và \[{\rm{y = }}\frac{1}{2}{\rm{x + 3}}\](d2). Xác định b để đường thẳng (d3) y = 2x + b cắt (d2) tại điểm có tung độ và hoành độ đối nhau.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+) Vẽ đồ thị hàm số \[\left( {{{\rm{d}}_{\rm{1}}}} \right){\rm{: y =   - }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{x}}\]

Với x = 0→ y = 0 ta có điểm (0; 0)

Với \[{\rm{x = 2}} \to {\rm{y =   - }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ }}{\rm{. 2 =   - 1}}\] ta có điểm (2; −1)

Vẽ đường thẳng đi qua hai điểm (0; 0); (2; −1) ta được (d1)

+) Vẽ đồ thị hàm số\[\left( {{{\rm{d}}_{\rm{2}}}} \right){\rm{ : y = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{x + 3}}\]

Với x = 0 → y = 3 ta có điểm (0; 3)

Với \[{\rm{y = 0}} \Rightarrow \frac{{\rm{1}}}{{\rm{2}}}{\rm{x + 3 = 0}} \Rightarrow {\rm{x =   - 6}}\] ta có điểm (−6; 0)

Vẽ đường thẳng đi qua hai điểm (0; 3); (−6; 0) ta được (d2)

+) Phương trình hoành độ giao điểm của \[\left( {{{\rm{d}}_{\rm{3}}}} \right){\rm{: y = 2x + b}}\]\[\left( {{{\rm{d}}_{\rm{2}}}} \right){\rm{: y = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{x + 3}}\]

\[{\rm{2x + b = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{x + 3}}\]

\[ \Leftrightarrow {\rm{2x - }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{x = 3 - b}}\]

\[ \Leftrightarrow \frac{{\rm{3}}}{{\rm{2}}}{\rm{x = 3 - b}}\]

\[ \Leftrightarrow {\rm{3x = 6 - 2b}}\]

\[ \Rightarrow {\rm{x = 2 - }}\frac{{\rm{2}}}{{\rm{3}}}{\rm{b}}\]

Thay \[{\rm{x = 2 - }}\frac{{\rm{2}}}{{\rm{3}}}{\rm{b}}\]vào \[\left( {{{\rm{d}}_{\rm{2}}}} \right){\rm{ : y = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{x + 3}}\]

\[ \Rightarrow {\rm{y = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ }}{\rm{. }}\left( {{\rm{2 - }}\frac{{\rm{2}}}{{\rm{3}}}{\rm{b}}} \right){\rm{ + 3 = 1 - }}\frac{{\rm{1}}}{{\rm{3}}}{\rm{b + 3 = 4 - }}\frac{{\rm{1}}}{{\rm{3}}}{\rm{b}}\]

Vì giao điểm của (d2); (d3) có tung độ và hoành độ đối nhau

→ x + y = 0

\[ \Rightarrow {\rm{2 - }}\frac{{\rm{2}}}{{\rm{3}}}{\rm{b + 4 - }}\frac{{\rm{1}}}{{\rm{3}}}{\rm{b = 0}}\]

\[ \Leftrightarrow {\rm{ - }}\frac{{\rm{2}}}{{\rm{3}}}{\rm{b - }}\frac{{\rm{1}}}{{\rm{3}}}{\rm{b =   - 4 - 2}}\]

\[ \Leftrightarrow - {\rm{b =   - 6}}\]

\[ \Leftrightarrow {\rm{b = 6}}\]

Vậy \[{\rm{b = 6}}\]thỏa mãn đề bài 

Vẽ trên cùng một mặt phẳng tọa độ Oxy đồ thị của các hàm số sau: y = 1/2 x (d1) và y = 1/2 (ảnh 1)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác MNP, gọi K là điểm thuộc đoạn thẳng NP sao cho \[{\rm{NK = }}\frac{1}{4}{\rm{NP}}\]và I là trung điểm của đoạn thẳng MK. Mệnh đề nào dưới đây đúng?

Xem đáp án » 27/02/2023 13,374

Câu 2:

Số 0 và số 1 có phải số chính phương không?

Xem đáp án » 12/07/2024 10,539

Câu 3:

Hai góc tương ứng là gì?

Xem đáp án » 12/07/2024 9,995

Câu 4:

Tổng của 2 vectơ đối bằng bao nhiêu?

Xem đáp án » 12/07/2024 9,490

Câu 5:

Cho nửa đường tròn (O) đường kính AB = 2R. Vẽ đường thẳng d là tiếp tuyến của (O) tại B. Trên cung AB lấy điểm M tùy ý tia AM cắt d tại N. Gọi C là trung điểm của AM tia CO cắt d tại D.

a ) CMR OBNC nội tiếp.

b ) CMR NO vuông góc với AD.

c ) CMR CA . CN = CO . CD

d ) Xác định vị trí điểm M để (2AM + AN ) đạt GTNN.

Xem đáp án » 12/07/2024 8,938

Câu 6:

Cho hình bình hành ABCD có AB = 2AD. Gọi E, F thứ tự là trung điểm của AB và CD

a) Các tứ giác AEFD, AECF là hình gì? Vì sao?

b) Gọi M là giao điểm của AF và DE, gọi N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật.

Xem đáp án » 12/07/2024 6,570

Câu 7:

Tính tổng các số lẻ liên tiếp từ 1 đến 99

Xem đáp án » 12/07/2024 5,890
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua