Câu hỏi:
27/02/2023 167Chứng minh rằng với mọi số tự nhiên \[{\rm{n\;}} \ge {\rm{2}}\], ta có bất đẳng thức: 3n > 3n + 1
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Chứng minh: 3n > 3n + 1(1)
+ Với n = 2 thì (1) ⇔ 9 > 7 (luôn đúng).
+ Giả sử (1) đúng với \[{\rm{n = k }} \ge {\rm{ 2}}\], tức là \[{{\rm{3}}^{\rm{k}}}{\rm{\; > 3k + 1}}\]
Ta chứng minh đúng với n = k + 1 tức là chứng minh: \[{{\rm{3}}^{{\rm{k + 1}}}}{\rm{\; > 3}}\left( {{\rm{k + 1}}} \right){\rm{ + 1}}\]
Thật vậy, ta có:
\[{{\rm{3}}^{{\rm{k + 1}}}}{\rm{\; = 3}}{\rm{.}}{{\rm{3}}^{\rm{k}}}{\rm{\; > 3}}{\rm{.}}\left( {{\rm{3k + 1}}} \right)\](Vì \[{{\rm{3}}^{\rm{k}}}{\rm{\; > 3k + 1}}\] theo giả sử)
= 9k + 3
= 3k + 3 + 6k
= 3.(k + 1) + 6k
> 3(k + 1) + 1.( vì \[{\rm{k }} \ge {\rm{ 2}}\] nên\[{\rm{6k }} \ge {\rm{ 12 > 1}}\])
→ (1) đúng với n = k + 1.
Vậy 3n > 3n + 1 đúng với mọi\[{\rm{n }} \ge {\rm{ 2}}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Cho nửa đường tròn (O) đường kính AB = 2R. Vẽ đường thẳng d là tiếp tuyến của (O) tại B. Trên cung AB lấy điểm M tùy ý tia AM cắt d tại N. Gọi C là trung điểm của AM tia CO cắt d tại D.
a ) CMR OBNC nội tiếp.
b ) CMR NO vuông góc với AD.
c ) CMR CA . CN = CO . CD
d ) Xác định vị trí điểm M để (2AM + AN ) đạt GTNN.
Câu 7:
Cho hàm số y = x2 và y = mx + 4, với m là tham số.
a) Khi m = 3, tìm tọa độ các giao điểm của hai đồ thị hàm số trên.
b) Chứng minh rằng với mọi giá trị m, đồ thị của hai hàm số đã cho luôn cắt nhau tại hai điểm phân biệt A1(x1,y1); A2 (x1 ,y2). Tìm tất cả các giá trị của m sao cho (y1)2 + (y2)2 = 72.
về câu hỏi!