Câu hỏi:

11/03/2023 15,595 Lưu

Trên tập hợp số phức, xét phương trình z22m+1z+m2=0 (m là số thực). Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1,z2 thỏa mãn z1+z2=2?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C

Ta có: Δ'=2m+2

TH1: Δ'<0m<1.

Phương trình có hai nghiệm phức, khi đó: z1=z2=ca=m2.

Suy ra: 2m2=2m=1m=1 (l).

TH2: Δ'>0m>1.

a.c=m20 nên phương trình có hai nghiệm phân biệt z1.z20

 hoặc z1.z20.

Suy ra: z1+z2=2z1+z2=22m+2=2m=2(l)m=0.

Vậy có 2  giá trị của m thỏa yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Ta có: Gx=Fx+C

F(4)+G(4)=4F(0)+G(0)=12F(4)+C=42F(0)+C=1F(4)F(0)=32.

Vậy: 02f(2x)dx=04f(x)dx=F(4)F(0)=32.

Lời giải

Chọn D

Ta có vectơ pháp tuyến của Oxy và Oyz lần lượt là k và i.

ki nên Oxy;Oyz^=90°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP