Câu hỏi:
13/07/2024 7,630Qua điểm M nằm ngoài (O), vẽ tiếp tuyến MA (A là tiếp điểm) và cát tuyến MBC (tia MO nằm giữa hai tia MA và MB).
a) Chứng minh MA2 = MB.MC.
b) Kẻ AH vuông góc với OM tại H. Chứng minh MH.MO = MB.MC và tứ giác OHBC nội tiếp.
c) Tia BH cắt (O) tại điểm thứ hai là K. Chứng minh C đối xứng K qua đường thẳng OM.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) Xét ∆ABM và ∆CAM, có:
\[\widehat M\] chung;
\(\widehat {MAB} = \widehat {MCA}\) (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung).
Do đó (g.g).
Suy ra \(\frac{{AM}}{{CM}} = \frac{{BM}}{{AM}}\).
Vậy MA2 = MB.MC (điều phải chứng minh).
b) Ta có MA là tiếp tuyến của (O).
Suy ra \(\widehat {MAO} = 90^\circ \).
Tam giác MAO vuông tại A có AH là đường cao:
MA2 = MH.MO (hệ thức lượng trong tam giác vuông).
Mà MA2 = MB.MC (câu a).
Vậy MH.MO = MB.MC (điều phải chứng minh).
Xét ∆MBH và ∆MOC, có:
\[\widehat M\] chung;
\(\frac{{MH}}{{MC}} = \frac{{MB}}{{MO}}\) (do MH.MO = MB.MC).
Do đó (c.g.c).
Suy ra \(\widehat {MBH} = \widehat {MOC}\) (cặp góc tương ứng).
Vậy tứ giác OHBC cùng thuộc một đường tròn.
c) Gọi I là giao điểm của Mk và (O).
Ta có \(\widehat {CBK} = \widehat {CIK}\) (cùng chắn ).
Mà \(\widehat {MBK} + \widehat {KBC} = 180^\circ \) và \(\widehat {MIC} + \widehat {CIK} = 180^\circ \).
Suy ra \(\widehat {MBK} = \widehat {MIC}\).
Xét ∆MIC và ∆MBK, có:
\(\widehat M\) chung;
\(\widehat {MBK} = \widehat {MIC}\) (chứng minh trên).
Do đó (g.g).
Suy ra \(\frac{{MI}}{{MB}} = \frac{{MC}}{{MK}} = \frac{{IC}}{{BK}}\)
\( \Leftrightarrow \frac{{MI}}{{MB}} = \frac{{MC}}{{IC}} = \frac{{MK}}{{BK}}\)
\( \Leftrightarrow \frac{{MI}}{{MK}} = \frac{{BK}}{{IC}} = \frac{{MB}}{{MC}}\).
Xét ∆MIB và ∆MKC, có:
\(\widehat M\) chung;
\(\frac{{MI}}{{MK}} = \frac{{MB}}{{MC}}\) (chứng minh trên).
Do đó (c.g.c).
Suy ra \(\widehat {MIB} = \widehat {MKC}\) (cặp góc tương ứng).
Mà hai góc này ở vị trí đồng vị.
Do đó IB // KC.
Vì vậy .
Suy ra \(\widehat {ICK} = \widehat {BKC}\).
Do đó tam giác HKC cân tại H.
Vì vậy HK = HC.
Mà OK = OC (= R).
Khi đó HO là đường trung trực của đoạn thẳng KC.
Vậy C đối xứng K qua đường thẳng OM.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Muốn đổi hỗn số thành số thập phân, ta làm các bước sau:
Bước 1: Đưa hỗn số thành phân số:
– Lấy phần nguyên nhân với mẫu số, kết quả nhận được cộng thêm tử số;
– Thay kết quả ở trên thành tử số mới, giữ nguyên mẫu số, ta được một phân số từ hỗn số đã cho.
Bước 2: Đưa mẫu số về 10; 100; 1000; … và thực hiện đổi phân số thập phân về số thập phân.
Ví dụ: Đổi các hỗn số \(5\frac{1}{{10}}\) và \(5\frac{3}{4}\) thành số thập phân.
Hướng dẫn giải
Ta có: \(5\frac{1}{{10}} = \frac{{5 \times 10 + 1}}{{10}} = \frac{{51}}{{10}} = 5,1\);
\(5\frac{3}{4} = \frac{{5 \times 4 + 3}}{4} = \frac{{23}}{4} = \frac{{23 \times 25}}{{4 \times 25}} = \frac{{575}}{{100}} = 5,75\).
Lời giải
Lời giải
Ta có E là trung điểm BC.
Suy ra \(CE = \frac{{BC}}{2} = \frac{a}{2}\).
Ta có AB = CD (do ABCD là hình vuông) và BE = CE (E là trung điểm BC).
Suy ra \(\sqrt {A{B^2} + B{E^2}} = \sqrt {C{D^2} + C{E^2}} \).
Do đó AE = DE.
Tam giác CDE vuông tại C: \(AE = DE = \sqrt {C{D^2} + C{E^2}} = \sqrt {{a^2} + {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 5 }}{2}\).
Ta có \(D{F^2} = \frac{{2D{A^2} + 2D{E^2} - A{E^2}}}{4} = \frac{{2{a^2} + 2{{\left( {\frac{{a\sqrt 5 }}{2}} \right)}^2} - {{\left( {\frac{{a\sqrt 5 }}{2}} \right)}^2}}}{4} = \frac{{13{a^2}}}{{16}}\).
Vậy \(DF = \frac{{a\sqrt {13} }}{4}\).
Do đó ta chọn phương án A.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận