Câu hỏi:
13/07/2024 2,295Cho tam giác ABC. Chứng minh rằng:
a) \(\cos \frac{A}{2} = \sqrt {\frac{{p\left( {p - a} \right)}}{{bc}}} \).
b) R ≥ 2r.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Ta có \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)
\( \Leftrightarrow 2{\cos ^2}\frac{A}{2} - 1 = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)
\( \Leftrightarrow 2{\cos ^2}\frac{A}{2} = \frac{{{b^2} + {c^2} + 2bc - {a^2}}}{{2bc}}\)
\( \Leftrightarrow 2{\cos ^2}\frac{A}{2} = \frac{{{{\left( {b + c} \right)}^2} - {a^2}}}{{2bc}}\)
\( \Leftrightarrow {\cos ^2}\frac{A}{2} = \frac{{\left( {b + c - a} \right)\left( {b + c + a} \right)}}{{4bc}}\)
\( \Leftrightarrow {\cos ^2}\frac{A}{2} = \frac{{4\left( {\frac{{b + c + a}}{2} - a} \right)\left( {\frac{{b + c + a}}{2}} \right)}}{{4bc}}\)
\( \Leftrightarrow {\cos ^2}\frac{A}{2} = \frac{{4\left( {p - a} \right)p}}{{4bc}}\).
Suy ra \( \Leftrightarrow \cos \frac{A}{2} = \sqrt {\frac{{4\left( {p - a} \right)p}}{{4bc}}} = \sqrt {\frac{{p\left( {p - a} \right)}}{{bc}}} \).
Vậy ta có điều phải chứng minh.
b) Ta có \(R = \frac{{abc}}{{4S}};\,S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \) và \(r = \frac{S}{p} = \frac{{2S}}{{a + b + c}}\).
Ta có \(R \ge 2r \Leftrightarrow \frac{{abc}}{{4S}} \ge \frac{{4S}}{{a + b + c}}\)
⇔ abc(a + b + c) ≥ 16S2
⇔ abc(a + b + c) ≥ 16.p(p – a)(p – b)(p – c)
\( \Leftrightarrow abc\left( {a + b + c} \right) \ge 16.\frac{{a + b + c}}{2}\left( {\frac{{a + b + c}}{2} - a} \right)\left( {\frac{{a + b + c}}{2} - b} \right)\left( {\frac{{a + b + c}}{2} - c} \right)\)
\( \Leftrightarrow abc\left( {a + b + c} \right) \ge 16.\frac{{a + b + c}}{2}\left( {\frac{{b + c - a}}{2}} \right)\left( {\frac{{a + c - b}}{2}} \right)\left( {\frac{{a + b - c}}{2}} \right)\)
⇔ abc(a + b + c) ≥ (a + b + c)(b + c – a)(a + c – b)(a + b – c)
⇔ abc ≥ (b + c – a)(a + c – b)(a + b – c) (*)
Áp dụng bất đẳng thức Cauchy, ta có:
\(\sqrt {\left( {b + c - a} \right)\left( {a + c - b} \right)} \le \frac{{b + c - a + a + c - b}}{2} = c\) (1)
Chứng minh tương tự, ta được:
⦁ \(\sqrt {\left( {b + c - a} \right)\left( {a + b - c} \right)} \le b\) (2)
⦁ \(\sqrt {\left( {a + c - b} \right)\left( {a + b - c} \right)} \le a\) (3)
Từ (1), (2), (3), suy ra (b + c – a)(a + c – b)(a + b – c) ≤ abc.
Dấu “=” xảy ra ⇔ a = b = c.
Do đó (*) đúng.
Vậy ta có điều phải chứng minh.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình vuông ABCD có cạnh bằng a. Gọi E là trung điểm cạnh BC, F là trung điểm cạnh AE. Tìm độ dài đoạn thẳng DF.
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Cho hình vuông ABCD có cạnh bằng a. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA. M là giao điểm của CE và DF.
a) Chứng minh tứ giác EFGH là hình vuông.
b) Chứng minh DF ⊥ CE và ∆MAD cân.
c) Tính diện tích tam giác MDC theo a.
Câu 7:
Cho hình thoi ABCD có AB = BD. Gọi M, N lần lượt trên các cạnh AB, BC sao cho AM + NC = AD.
1) Chứng minh AM = BN.
2) Chứng minh ∆AMD = ∆BND.
3) Tính số đo các góc của ∆DMN.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
về câu hỏi!