Tìm x, y là số nguyên, biết:
a) x.y = 11;
b) (2x + 1)(3y – 2) = 12;
c) 1 + 2 + 3 + … + x = 55;
d) 6 ⋮ (x – 1);
e) (2x + 1)3 = 27;
f) 2x.16 = 128.
Tìm x, y là số nguyên, biết:
a) x.y = 11;
b) (2x + 1)(3y – 2) = 12;
c) 1 + 2 + 3 + … + x = 55;
d) 6 ⋮ (x – 1);
e) (2x + 1)3 = 27;
f) 2x.16 = 128.
Quảng cáo
Trả lời:
Lời giải
a) x.y = 11 = 1.11.
\( \Rightarrow \left\{ \begin{array}{l}x = 1\\y = 11\end{array} \right.\) hoặc \(\left\{ \begin{array}{l}x = 11\\y = 1\end{array} \right.\)
Vậy (x; y) ∈ {(1; 11), (11; 1)}.
b) (2x + 1)(3y – 2) = 12
Ta có {2x + 1; 3y – 2} ∈ Ư(12).
Ư(12) ∈ {1; 2; 3; 4; 6; 12}.
Ta có bảng sau:
Mà x, y là số nguyên nên \[\left( {x;y} \right) = \,\left( {1;2} \right)\]
Vậy \[\left( {x;y} \right) = \,\left( {1;2} \right)\].
c) Từ 1 đến x có: (x – 1) : 1 + 1 = x số hạng.
Ta có 1 + 2 + 3 + … + x = 55
⇔ (x + 1) . x : 2 = 55
⇔ (x + 1) . x = 110
⇔ x2 + x – 110 = 0
⇔ x2 – 10x + 11x – 110 = 0
⇔ x(x – 10) + 11(x – 10) = 0
⇔ (x – 10)(x + 11) = 0
⇔ x – 10 = 0 hoặc x + 11 = 0
⇔ x = 10 hoặc x = –11.
Vậy x ∈ {10; –11}.
d) Ta có 6 chia hết cho (x – 1).
Suy ra x – 1 ∈ {1; 2; 3; 6}.
Vậy x ∈ {2; 3; 4; 7}.
e) (2x + 1)3 = 27
⇔ (2x + 1)3 = 33
⇔ 2x + 1 = 3
⇔ 2x = 2
⇔ x = 1.
Vậy x ∈ {1}.
f) 2x.16 = 128
⇔ 2x = 8
⇔ 2x = 23
⇔ x = 3.
Vậy x ∈ {3}.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Muốn đổi hỗn số thành số thập phân, ta làm các bước sau:
Bước 1: Đưa hỗn số thành phân số:
– Lấy phần nguyên nhân với mẫu số, kết quả nhận được cộng thêm tử số;
– Thay kết quả ở trên thành tử số mới, giữ nguyên mẫu số, ta được một phân số từ hỗn số đã cho.
Bước 2: Đưa mẫu số về 10; 100; 1000; … và thực hiện đổi phân số thập phân về số thập phân.
Ví dụ: Đổi các hỗn số \(5\frac{1}{{10}}\) và \(5\frac{3}{4}\) thành số thập phân.
Hướng dẫn giải
Ta có: \(5\frac{1}{{10}} = \frac{{5 \times 10 + 1}}{{10}} = \frac{{51}}{{10}} = 5,1\);
\(5\frac{3}{4} = \frac{{5 \times 4 + 3}}{4} = \frac{{23}}{4} = \frac{{23 \times 25}}{{4 \times 25}} = \frac{{575}}{{100}} = 5,75\).
Lời giải
Lời giải
Ta có E là trung điểm BC.
Suy ra \(CE = \frac{{BC}}{2} = \frac{a}{2}\).
Ta có AB = CD (do ABCD là hình vuông) và BE = CE (E là trung điểm BC).
Suy ra \(\sqrt {A{B^2} + B{E^2}} = \sqrt {C{D^2} + C{E^2}} \).
Do đó AE = DE.
Tam giác CDE vuông tại C: \(AE = DE = \sqrt {C{D^2} + C{E^2}} = \sqrt {{a^2} + {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 5 }}{2}\).
Ta có \(D{F^2} = \frac{{2D{A^2} + 2D{E^2} - A{E^2}}}{4} = \frac{{2{a^2} + 2{{\left( {\frac{{a\sqrt 5 }}{2}} \right)}^2} - {{\left( {\frac{{a\sqrt 5 }}{2}} \right)}^2}}}{4} = \frac{{13{a^2}}}{{16}}\).
Vậy \(DF = \frac{{a\sqrt {13} }}{4}\).
Do đó ta chọn phương án A.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.