Câu hỏi:
22/03/2023 668Cho đường tròn tâm O, bán kính R = 8 cm và một điểm A có khoảng cách OA = 16 cm. Một đường kính BC quay xung quanh tâm O (đường thẳng BC không đi qua A). Đường tròn ngoại tiếp tam giác ABC cắt đường thẳng OA tại điểm thứ hai là D.
a) Chứng minh ∆OAB và ∆OCD đồng dạng.
b) Tính OD, suy ra D là điểm cố định khi đường kính BC quay xung quanh điểm O.
c) Giả sử AB cắt đường tròn (O) tại điểm thứ hai E và AC cắt đường tròn (O) tại điểm thứ hai F và gọi P là giao điểm của EF với OA. Chứng minh bốn điểm C, F, D, P cùng nằm trên một đường tròn. Có nhận xét gì về bốn điểm B, E, D, P?
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Bắt đầu thiQuảng cáo
Trả lời:
Lời giải
a) Xét ∆OAB và ∆OCD, có:
^CBA=^CDAˆCBA=ˆCDA (2 góc nội tiếp cùng chắn của đường tròn ngoại tiếp tam giác ABC);
^AOB=^CODˆAOB=ˆCOD (đối đỉnh).
Do đó (g.g).
b) Ta có (chứng minh câu a).
Suy ra OAOC=OBODOAOC=OBOD.
⇔168=8OD⇔168=8OD.
⇔OD=8.816=4⇔OD=8.816=4 (cm).
Ta có OD=OB.OCOA=R2OAOD=OB.OCOA=R2OA.
Mà R cố định và OA cố định.
Nên D là điểm cố định khi đường kính BC quay xung quanh điểm O.
c) Ta có tứ giác BEFC nội tiếp đường tròn (O).
Suy ra ^EBC=^EFAˆEBC=ˆEFA.
Mà ^EBC=^ADCˆEBC=ˆADC (chứng minh trên).
Do đó ^ADC=^EFAˆADC=ˆEFA.
Vì vậy bốn điểm C, F, D, P cùng nằm trên một đường tròn.
Chứng minh tương tự, ta được bốn điểm B, E, D, P cùng nằm trên một đường tròn.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình vuông ABCD có cạnh bằng a. Gọi E là trung điểm cạnh BC, F là trung điểm cạnh AE. Tìm độ dài đoạn thẳng DF.
Câu 3:
Câu 4:
Câu 5:
Cho hình vuông ABCD có cạnh bằng a. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA. M là giao điểm của CE và DF.
a) Chứng minh tứ giác EFGH là hình vuông.
b) Chứng minh DF ⊥ CE và ∆MAD cân.
c) Tính diện tích tam giác MDC theo a.
Câu 6:
Cho tam giác nhọn ABC (AB < AC) nội tiếp trong đường tròn (O). Tiếp tuyến tại A của đường tròn (O) cắt đường thẳng BC tại M.
a) Chứng minh MA2 = MB.MC.
b) Vẽ đường cao BD của tam giác ABC. Đường thẳng qua D và song song với MA cắt AB tại E. Chứng minh tứ giác BCDE nội tiếp và xác định tâm O’ của đường tròn ngoại tiếp.
c) Tia OO’ cắt đường tròn (O) tại N. Chứng minh AN là tia phân giác của góc BAC.
d) Gọi I, K lần lượt là giao điểm của AN với BD và CE. Tìm điều kiện của tam giác ABC để có IBID.KCKE=IBID+KCKEIBID.KCKE=IBID+KCKE.
Câu 7:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận