Câu hỏi:

13/07/2024 7,912

Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.

a) Chứng minh AH = DE.

b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.

c) Chứng minh O là trực tâm của tam giác ABQ.

d) Chứng minh SABC = 2SDEQP.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Ta có \(\widehat {HEA} = \widehat {EAD} = \widehat {ADH} = 90^\circ \).

Suy ra tứ giác ADHE là hình chữ nhật.

Do đó DE = AH.

b) Ta có O là giao điểm của DE và AH.

Suy ra OE = OH = OA = OD.

Tam giác BDH vuông tại D có DP là đường trung tuyến.

Suy ra DP = PH.

Xét ∆PDO và ∆PHO, có:

PO là cạnh chung;

DP = PH (chứng minh trên);

DO = OH (chứng minh trên).

Do đó ∆ PDO = ∆ PHO (c.c.c).

Suy ra \(\widehat {PDO} = \widehat {PHO} = 90^\circ \) (cặp góc tương ứng).

Vì vậy DP DE (1)

Chứng minh tương tự, ta được QE DE (2)

Từ (1), (2), suy ra DP // QE.

Ta có DP // QE (chứng minh trên) và \(\widehat {PDE} = \widehat {DEQ} = 90^\circ \) (chứng minh trên).

Vậy tứ giác DEQP là hình thang vuông.

c) Tam giác AHC có O, Q lần lượt là trung điểm của AH và HC.

Suy ra OQ là đường trung bình của tam giác AHC.

Do đó OQ // AC.

Mà AC AB (tam giác ABC vuông tại A).

Vì vậy OQ AB.

Tam giác ABQ có AH, QO là hai đường cao cắt nhau tại O.

Vậy O là trực tâm của tam giác ABQ.

d) Ta có \({S_{DEQP}} = \frac{1}{2}DE\left( {DP + QE} \right) = \frac{1}{2}AH\left( {\frac{1}{2}BH + \frac{1}{2}CH} \right)\)

\( = \frac{1}{4}AH\left( {BH + CH} \right) = \frac{1}{4}AH.BC = \frac{1}{2}{S_{ABC}}\).

Vậy SABC = 2SDEQP.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác đều ABC cạnh a, điểm M là trung điểm BC. Dựng các vectơ sau và tính độ dài của chúng.

a) \(\frac{1}{2}\overrightarrow {CB} + \overrightarrow {MA} \);

b) \(\overrightarrow {BA} - \frac{1}{2}\overrightarrow {BC} \);

c) \(\frac{1}{2}\overrightarrow {AB} + 2\overrightarrow {AC} \);

d) \(\frac{3}{4}\overrightarrow {MA} - 2,5\overrightarrow {MB} \).

Xem đáp án » 13/07/2024 20,801

Câu 2:

Một trang trại cần thuê xe vận chuyển 450 con lợn và 35 tấn cám. Nơi cho thuê xe chỉ có 12 xe lớn và 10 xe nhỏ. Một chiếc xe lớn có thể chở 50 con lợn và 5 tấn cám. Một chiếc xe nhỏ có thể chở 30 con lợn và 1 tấn cám. Tiền thuê một xe lớn là 4 triệu đồng, một xe nhỏ là 2 triệu đồng. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí thuê xe là thấp nhất?

Xem đáp án » 13/07/2024 13,983

Câu 3:

Khai triển hằng đẳng thức: x3 + y3.

Xem đáp án » 13/07/2024 12,340

Câu 4:

Hình chóp S.ABCD có đáy là hình thoi, AB = 2a, \(\widehat {BAD} = 120^\circ \). Hình chiếu vuông góc của S lên (ABCD) là I, với I là giao điểm của hai đường chéo AC và BD, biết \(SI = \frac{a}{2}\). Tính thể tích khối chóp S. ABCD.

Xem đáp án » 13/07/2024 8,545

Câu 5:

Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AD, BC.

a) Chứng minh \(\overrightarrow {MN} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {DC} } \right)\).

b) Xác định điểm O sao cho \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \vec 0\).

Xem đáp án » 13/07/2024 7,410

Câu 6:

Cho biểu thức \(P = \frac{{{x^2} + x}}{{{x^2} - 2x + 1}}:\left( {\frac{{x + 1}}{x} - \frac{1}{{1 - x}} + \frac{{2 - {x^2}}}{{{x^2} - x}}} \right)\).

a) Rút gọn P.

b) Tìm x để P < 1.

c) Tìm giá trị nhỏ nhất của P khi x > 2.

Xem đáp án » 13/07/2024 6,974

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store