Câu hỏi:
13/07/2024 13,598Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.
a) Chứng minh AH = DE.
b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.
c) Chứng minh O là trực tâm của tam giác ABQ.
d) Chứng minh SABC = 2SDEQP.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Lời giải
a) Ta có \(\widehat {HEA} = \widehat {EAD} = \widehat {ADH} = 90^\circ \).
Suy ra tứ giác ADHE là hình chữ nhật.
Do đó DE = AH.
b) Ta có O là giao điểm của DE và AH.
Suy ra OE = OH = OA = OD.
Tam giác BDH vuông tại D có DP là đường trung tuyến.
Suy ra DP = PH.
Xét ∆PDO và ∆PHO, có:
PO là cạnh chung;
DP = PH (chứng minh trên);
DO = OH (chứng minh trên).
Do đó ∆ PDO = ∆ PHO (c.c.c).
Suy ra \(\widehat {PDO} = \widehat {PHO} = 90^\circ \) (cặp góc tương ứng).
Vì vậy DP ⊥ DE (1)
Chứng minh tương tự, ta được QE ⊥ DE (2)
Từ (1), (2), suy ra DP // QE.
Ta có DP // QE (chứng minh trên) và \(\widehat {PDE} = \widehat {DEQ} = 90^\circ \) (chứng minh trên).
Vậy tứ giác DEQP là hình thang vuông.
c) Tam giác AHC có O, Q lần lượt là trung điểm của AH và HC.
Suy ra OQ là đường trung bình của tam giác AHC.
Do đó OQ // AC.
Mà AC ⊥ AB (tam giác ABC vuông tại A).
Vì vậy OQ ⊥ AB.
Tam giác ABQ có AH, QO là hai đường cao cắt nhau tại O.
Vậy O là trực tâm của tam giác ABQ.
d) Ta có \({S_{DEQP}} = \frac{1}{2}DE\left( {DP + QE} \right) = \frac{1}{2}AH\left( {\frac{1}{2}BH + \frac{1}{2}CH} \right)\)
\( = \frac{1}{4}AH\left( {BH + CH} \right) = \frac{1}{4}AH.BC = \frac{1}{2}{S_{ABC}}\).
Vậy SABC = 2SDEQP.
Đã bán 187
Đã bán 189
Đã bán 1,5k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác đều ABC cạnh a, điểm M là trung điểm BC. Dựng các vectơ sau và tính độ dài của chúng.
a) \(\frac{1}{2}\overrightarrow {CB} + \overrightarrow {MA} \);
b) \(\overrightarrow {BA} - \frac{1}{2}\overrightarrow {BC} \);
c) \(\frac{1}{2}\overrightarrow {AB} + 2\overrightarrow {AC} \);
d) \(\frac{3}{4}\overrightarrow {MA} - 2,5\overrightarrow {MB} \).
Câu 2:
Cho biểu thức \(P = \frac{{{x^2} + x}}{{{x^2} - 2x + 1}}:\left( {\frac{{x + 1}}{x} - \frac{1}{{1 - x}} + \frac{{2 - {x^2}}}{{{x^2} - x}}} \right)\).
a) Rút gọn P.
b) Tìm x để P < 1.
c) Tìm giá trị nhỏ nhất của P khi x > 2.
Câu 3:
Câu 5:
Câu 6:
Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AD, BC.
a) Chứng minh \(\overrightarrow {MN} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {DC} } \right)\).
b) Xác định điểm O sao cho \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \vec 0\).
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận