Câu hỏi:

29/03/2023 568

Quan sát Hình 1, bạn Đan khẳng định rằng: Diện tích của hình vuông lớn nhất bằng tổng diện tích của hai hình vuông còn lại.

Bạn Đan đã dựa vào kiến thức nào để đưa ra khẳng định trên?

Quan sát Hình 1, bạn Đan khẳng định rằng: Diện tích của hình vuông lớn nhất bằng tổng diện tích của hai hình vuông còn lại.  Bạn Đan đã dựa vào kiến thức nào để đưa ra khẳng định trên?    (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Sau bài học này chúng ta sẽ giải quyết được câu hỏi trên như sau:

Bạn Đan đã dựa vào Định lí Pythagore để đưa ra khẳng định “Diện tích của hình vuông lớn nhất bằng tổng diện tích của hai hình vuông còn lại”.

Thật vậy, giả sử A, B, C là ba đỉnh của tam giác (vuông tại A) và độ dài cạnh của các hình vuông lần lượt là a, b, c (hình vẽ).

Quan sát Hình 1, bạn Đan khẳng định rằng: Diện tích của hình vuông lớn nhất bằng tổng diện tích của hai hình vuông còn lại.  Bạn Đan đã dựa vào kiến thức nào để đưa ra khẳng định trên?    (ảnh 2)

Diện tích hình vuông nhỏ màu xanh lá cây là: a2 (đơn vị diện tích).

Diện tích hình vuông nhỏ màu xanh nước biển là: b2 (đơn vị diện tích).

Diện tích hình vuông lớn màu tím là: c2 (đơn vị diện tích).

Do tam giác ABC vuông tại A nên theo định lí Pythagore ta có BC2 = AB2 + AC2

Hay c2 = a2 + b2.

Vậy diện tích của hình vuông lớn nhất bằng tổng diện tích của hai hình vuông còn lại.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử ABC là tam giác đều cạnh a (hình vẽ).

Cho một tam giác đều cạnh a.  a) Tính độ dài đường cao của tam giác đó theo a.  (ảnh 1)

a) Vẽ đường cao AH của tam giác đều ABC.

Khi đó H là trung điểm của BC nên HB = HC = 12a.

Xét tam giác AHC vuông tại H, theo định lí Pythagore ta có:

AC2 = AH2 + HC2

Suy ra AH2 = AC2 – HC2

                   =a212a2=a214a2=34a2=322.a2=a322 

Do đó AH=a32.

Lời giải

Tính độ dài đường chéo của hình vuông có độ dài cạnh là a. (ảnh 1)

Do tam giác ABC vuông tại B nên theo định lí Pythagore ta có:

AC2 = AB2 + BC2 = a2 + a2 = 2a2

Suy ra AC=2a2=22.a2=2.a2=a2.

Vậy độ dài đường chéo của hình vuông đó là a2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay