Câu hỏi:
12/07/2024 24,654Cho tam giác ABC vuông tại A có M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D cho MD = MA. Chứng minh tứ giác ABDC là sao hình chữ nhật và .
Quảng cáo
Trả lời:
Do MD = MA (giả thiết) nên M là trung điểm của AD.
Xét tứ giác ABDC có hai đường chéo AD và BC cắt nhau tại trung điểm M của mỗi đường
Do đó ABDC là hình bình hành.
Lại có .
Do đó hình bình hành ABDC là hình chữ nhật.
Suy ra AD = BC.
Mà (do M là trung điểm của AD) nên .
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét tứ giác ABCD có .
Do đó ABCD là hình chữ nhật.
Khi đó CB = AD = 300 m, CD = AB = 400 m.
Xét ΔABC vuông tại B, theo định lí Pythagore ta có:
AC2 = AB2 + BC2
Suy ra .
Vậy khoảng cách từ vị trí C đến mỗi vị trí A, B, D lần lượt là 500 m, 300 m và 400 m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
15 câu Trắc nghiệm Toán 8 Chân trời sáng tạo Bài 1: Đơn thức và đa thức nhiều biến có đáp án
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Cánh diều Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến có đáp án
10 Bài tập Nhận biết đơn thức, đơn thức thu gọn, hệ số, phần biến và bậc của đơn thức (có lời giải)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 5)
Dạng 8: Bài luyện tập 3 dạng 4. Tổng hợp có đáp án
Dạng 2: Bài luyện tập 1 Dạng 2: Rút gọn phân thức có đáp án
Minh Lâm
b4: cho tam giác ABC cân tại A, trên tia đối của BA lấy điểm K, trên tia đối CA lấy điểm H sao cho BK=ẻ KM vuông góc với BC(M thuộc BC), HN vuông góc với BC(N thuộc BC). CM:
a, KM=HN
b, AM=AN
c, KH song song BC
Minh Lâm
b3: cho tam giác ABC vuông tại A, M là trung điểm của BC, trên tia đối của MA lấy điểm D sao cho MD=MA. CM:
a, tam giác ABD vuông
b, tam giác ABD=tam giác BAC
c, tam giác AMB, tam giác AMC cân