Câu hỏi:
30/03/2023 6,047Cho hàm số f(x) liên tục trên đoạn [-4;4] và có bảng biến thiên như hình vẽ bên dưới.
Có tất cả bao nhiêu giá trị thực của tham số m thuộc đoạn [-4;4] để giá trị lớn nhất của hàm số có giá trị lớn nhất trên đoạn [-1;1] bằng 5 ?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Chọn C
TH1: Giả sử giá trị lớn nhất của hàm g(x) trên đoạn [-1;1] bằng .
Theo giả thiết ta có . Thử lại ta có f(m) = 4 không thoả mãn
Với f(m) = -1 . Dựa vào BBT của hàm số f(x) ta có 5 giá trị m thoả mãn.
TH2: Giả sử giá trị lớn nhất của hàm g(x) trên đoạn [-1;1] bằng .
Theo giả thiết ta có . Thử lại ta có f(m) = -4 không thoả
Với f(m) = 1 . Dựa vào BBT của hàm số f(x) ta có 5 giá trị m thoả mãn.
Vậy có 10 giá trị m thoả mãn đề bài.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số có đồ thị như hình vẽ bên dưới. Giá trị của tổng bằng:
Câu 2:
Cho hàm số y = f(x) có đạo hàm trên R và hàm số y = f'(x) là hàm số bậc ba có đồ thị là đường cong trong hình vẽ.
Hàm số y = f(x) nghịch biến trên
Câu 3:
Có bao nhiêu giá trị nguyên của tham số m để hàm số không có điểm cực đại?
Câu 5:
Cho hàm số . Xét các mệnh đề sau:
1) Hàm số đã cho đồng biến trên
2) Hàm số đã cho nghịch biến trên
3) Hàm số đã cho không có điểm cực trị.
4) Hàm số đã cho nghịch biến trên các khoảng và
Số các mệnh đề đúng là
Câu 6:
Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số đồng biến trên khoảng ?
Câu 7:
Cho hàm số y = f(2 - x) có bảng biến thiên như sau:
Tổng các giá trị nguyên của tham số m để phương trình có đúng 8 nghiệm thực phân biệt thuộc khoảng ?
về câu hỏi!