Câu hỏi:
30/03/2023 5,617Cho hàm số , với m là tham số. Giả sử đồ thị (C) cắt trục hoành tại ba điểm phân biệt có hoành độ thỏa mãn . Khẳng định nào sau đây đúng?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Chọn C
Phương trình hoành độ giao điểm của đồ thị (C) với trục hoành (1). Xét hàm số với
Ta có
Ta có
và
BBT của hàm số f(x)
Đồ thị (C) cắt trục hoành tại 3 điểm phân biệt có hoành độ thoả mãn
<=> Phương trình (1) có 3 nghiệm
<=> Đường thẳng y = m cắt đồ thị hàm số tại 3 điểm có hoành độ
Dựa vào BBT ta suy ra
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số có đồ thị như hình vẽ bên dưới. Giá trị của tổng bằng:
Câu 2:
Cho hàm số y = f(x) có đạo hàm trên R và hàm số y = f'(x) là hàm số bậc ba có đồ thị là đường cong trong hình vẽ.
Hàm số y = f(x) nghịch biến trên
Câu 3:
Có bao nhiêu giá trị nguyên của tham số m để hàm số không có điểm cực đại?
Câu 5:
Cho hàm số . Xét các mệnh đề sau:
1) Hàm số đã cho đồng biến trên
2) Hàm số đã cho nghịch biến trên
3) Hàm số đã cho không có điểm cực trị.
4) Hàm số đã cho nghịch biến trên các khoảng và
Số các mệnh đề đúng là
Câu 6:
Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số đồng biến trên khoảng ?
Câu 7:
Cho hàm số y = f(2 - x) có bảng biến thiên như sau:
Tổng các giá trị nguyên của tham số m để phương trình có đúng 8 nghiệm thực phân biệt thuộc khoảng ?
về câu hỏi!