Câu hỏi:
12/07/2024 5,003Cho đường tròn tâm O đường kính BC, điểm A thuộc đường tròn. Vẽ bán kính OK song song với BA (K và A nằm cùng phía đối với BC) tiếp tuyến đường trong tâm O tại C cắt ở I , OI cắt tại H.
a) Chứng minh tam giác ABC là tam giác vuông tại A.
b) Chứng minh IA là tiếp tuyến của đường tròn tâm O.
c) Cho BC = 30 cm; AB = 18 cm, tính các độ dài OI và CI.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Ta có BC là đường kính của (O).
Mà A Î (O) nên ∆ABC nội tiếp đường tròn tâm O, đường kính BC.
Do đó ∆ABC vuông tại A.
b) Ta có ∆ABC vuông tại A nên AB ^ AC.
Mà AB // OK (gt) suy ra AC ^ OK.
Mà OI cắt AC tại H nên OH ^ AC.
Xét ∆OAC có OA = OC và H là đường cao.
Suy ra ∆OAC là tam giác cân tại O có OH là tia phân giác.
Do đó \(\widehat {AOH} = \widehat {HOC}\).
Xét ∆AOI và ∆COI có:
OA = OC
OI: cạnh chung
\(\widehat {AOH} = \widehat {HOC}\)
Do đó ∆AOI = ∆COI (c.g.c)
Suy ra \(\widehat {OAI} = \widehat {OCI}\) (hai cạnh tương ứng).
Mà \(\widehat {OCI} = 90^\circ \) (Do IC là tiếp tuyến của (O) tại C)
\( \Rightarrow \widehat {OAI} = 90^\circ \)
Þ OA ^ AI tại A
Þ IA là tiếp tuyến của (O) tại A
c) \(OC = \frac{{BC}}{2} = 15\;\left( {cm} \right)\)
• \(AC = \sqrt {B{C^2} - A{B^2}} = \sqrt {{{30}^2} - {{18}^2}} = 24\;\,\left( {cm} \right)\)
\( \Rightarrow HC = \frac{{AC}}{2} = 12\;cm\)
• \(OH = \sqrt {O{C^2} - H{C^2}} = \sqrt {{{15}^2} - {{12}^2}} = 9\;cm\)
• \(\cos \widehat {HOC} = \frac{{OH}}{{OC}} = \frac{9}{{15}} = \frac{3}{5} = \cos \widehat {IOC}\)
\( \Rightarrow \cos \widehat {IOC} = \frac{{OC}}{{OI}} = \frac{3}{5}\)
\( \Rightarrow OI = OC:\frac{3}{5} = 15:\frac{3}{5} = 25\;(cm)\)
• \(CI = \sqrt {O{I^2} - O{C^2}} = \sqrt {{{25}^2} - {{15}^2}} = 20\;\,(cm)\).
Vậy OI = 25 cm; CI = 20 cm.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Câu 3:
Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB = 4 cm, \(AC = 4\sqrt 3 \;cm\). Giải tam giác ABC.
b) Kẻ HD, HE lần lượt vuông góc với AB, AC (D thuộc AB, E thuộc AC). Chứng
minh BD.DA + CE.EA = AH2.
c) Lấy diểm M nằm giữa E và C, kẻ AI vuông góc với MB tại I. Chứng minh:
\[\sin \widehat {AMB}\,.\,\sin \widehat {ACB} = \frac{{HI}}{{CM}}\].
Câu 4:
Câu 5:
Câu 6:
Cho bốn điểm A, B, C, D. Chứng minh:
a) \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {CB} \);
b) \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {BC} + \overrightarrow {DA} = \overrightarrow 0 \).
Câu 7:
về câu hỏi!