Câu hỏi:
12/07/2024 2,555Xếp ngẫu nhiên 5 học sinh A, B, C, D, E ngồi vào 1 dãy 5 ghế thẳng hàng (mỗi bạn ngồi 1 ghế). Tính xác suất để 2 bạn A và B không ngồi cạnh nhau.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Xếp 5 học sinh A, B, C, D, E vào 1 dãy 5 ghế thẳng hàng có 5! cách xếp ⇒ n(Ω) = 5! =120.
Gọi X là biến cố: “2 bạn A và B không ngồi cạnh nhau” ⇒ Biến cố đối \(\overline X \): “ 2 bạn A và B ngồi cạnh nhau”
Buộc 2 bạn A và B coi là 1 phần tử, có 2! Cách đổi chỗ 2 bạn A và B trong buộc này.
Bài toán trở thành xếp 4 bạn (AB), C, D, E vào dãy 4 ghế thẳng hàng ⇒ Có 4! cách xếp.
\( \Rightarrow n\left( {\overline X } \right) = 2!.4! = 48\)
\( \Rightarrow P\left( {\overline X } \right) = \frac{{n\left( {\overline X } \right)}}{{n\left( \Omega \right)}} = \frac{{48}}{{120}} = \frac{2}{5}\)
Vậy P(X) = 1 – \(P\left( {\overline X } \right) = 1 - \frac{2}{5} = \frac{3}{5}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của các đoạn BC, CD, SO. Tìm giao tuyến của (MNP) với các mặt phẳng (SAB), (SAD), (SBC) và (SCD).
Câu 2:
Tính tổng: \({\sin ^2}2^\circ + {\sin ^2}4^\circ + {\sin ^2}6^\circ + ... + {\sin ^2}84^\circ + {\sin ^2}86^\circ + {\sin ^2}88^\circ \).
Câu 3:
Giá trị của
\(M = {\cos ^2}15 + {\cos ^2}25 + {\cos ^2}35 + {\cos ^2}45 + {\cos ^2}105 + {\cos ^2}115 + {\cos ^2}125\)là ?
Câu 4:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh A, \(\widehat {BAD} = 120^\circ \). Hai mặt phẳng (SAB) và (SCD) cùng vuông góc với mặt đáy, (SC;(ABCD)) = 45°. Gọi G là trọng tâm ∆ABC, tính khoảng cách h từ G đến (SCD) theo a.
Câu 5:
Cho hình thang ABCD (AB // CD) có AD = CD và AC ⊥ BC. Từ C kẻ đường thẳng song song với AD và cắt AB tại E.
a. Chứng minh tứ giác AECD là hình thoi.
b. Chứng minh tứ giác BEDC là hình bình hành.
c. Chứng minh ∆CEB cân.
Câu 6:
Một tòa nhà có n tầng, các tần được đánh số từ 1 đến n theo thứ tự từ dưới lên trên. Có 4 thang máy đang ở tầng 1. Biết rằng mỗi thang máy có thể dừng ở đúng 3 tầng (không kể tầng 1) và 3 tầng này không là 3 tầng số nguyên liên tiếp với 2 tầng bất kì (khác tầng 1) của tòa nhà luôn có 1 thang máy dừng được ở cả 2 tầng này. Hỏi GTLN của n là bao nhiêu?
về câu hỏi!