Cho hình thang ABCD (AB // CD) có AD = CD và AC ⊥ BC. Từ C kẻ đường thẳng song song với AD và cắt AB tại E.
a. Chứng minh tứ giác AECD là hình thoi.
b. Chứng minh tứ giác BEDC là hình bình hành.
c. Chứng minh ∆CEB cân.
Cho hình thang ABCD (AB // CD) có AD = CD và AC ⊥ BC. Từ C kẻ đường thẳng song song với AD và cắt AB tại E.
a. Chứng minh tứ giác AECD là hình thoi.
b. Chứng minh tứ giác BEDC là hình bình hành.
c. Chứng minh ∆CEB cân.
Quảng cáo
Trả lời:

a. Xét ∆AED và ∆CDE
Có \(\widehat {AED} = \widehat {CDE}\) (2 góc so le trong)
\(\widehat {CED} = \widehat {ADE}\) (2 góc so le trong)
AD chung
⇒ ∆AED = ∆CDE (g.c.g) ⇒ AE = CD
Xét tứ giác AECD có:
AE = CD
AE // DC (vì E ∈ AB)
⇒ AECD là hình bình hành
Mà AD = DC (gt) ⇒ AEDC là hình thoi.
b. Có: DC // EB (CD // AB)
DE // CB (vuông góc với AC)
Vậy tứ giác BEDC là hình bình hành.
c. Ta có: IE // CB; I là trung điểm của AC
⇒ FE là đường trung bình của ∆ABC
Từ đó suy ra E là trung điểm AB
Mà ∆ABC vuông tại C, cạnh là AB
Nên AE = EB = EC
Vậy ∆CEB cân tại E (∆CEB cân).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi I, E lần lượt là giao điểm của MN với AD, AB
Qua P kẻ đường thẳng song song với BD cắt SB, SD lần lượt tại K, G
Ta có:
M, N lần lượt là trung điểm của BC, CD ⇒ MN là đường trung bình của ∆BCD ⇒ MN // BD
Mà KG // BD ⇒ MN // KG ⇒ K, G ∈ (MNP)
Ta có:
+) \(\left\{ {\begin{array}{*{20}{c}}{E = AB \cap MN \Rightarrow E \in \left( {SAB} \right) \cap \left( {MNP} \right)}\\{K \in SB;K \in \left( {MNP} \right) \Rightarrow K \in \left( {SAB} \right) \cap \left( {MNP} \right)}\end{array}} \right. \Rightarrow \left( {SAB} \right) \cap \left( {MNP} \right) = KE\)
+) \(\left\{ {\begin{array}{*{20}{c}}{I = AD \cap MN \Rightarrow I \in \left( {SAD} \right) \cap \left( {MNP} \right)}\\{G \in SD;G \in \left( {MNP} \right) \Rightarrow G \in \left( {SAD} \right) \cap \left( {MNP} \right)}\end{array}} \right. \Rightarrow \left( {SAD} \right) \cap \left( {MNP} \right) = IG\)
+) \(\left\{ {\begin{array}{*{20}{c}}{M,K \in \left( {MNP} \right)}\\{M,K \in \left( {SBC} \right)}\end{array}} \right. \Rightarrow \left( {SBC} \right) \cap \left( {MNP} \right) = MK\)
+) \(\left\{ {\begin{array}{*{20}{c}}{N,G \in \left( {MNP} \right)}\\{N,G \in \left( {SCD} \right)}\end{array}} \right. \Rightarrow \left( {SCD} \right) \cap \left( {MNP} \right) = NG\)
Vậy (SAB) ∩ (MNP) = KE; (SAD) ∩ (MNP) = IG; (SBC) ∩ (MNP) = MK; (SCD) ∩ (MNP) = NG.
Lời giải
\({\sin ^2}2^\circ + {\sin ^2}4^\circ + {\sin ^2}6^\circ + ... + {\sin ^2}84^\circ + {\sin ^2}86^\circ + {\sin ^2}88^\circ \)
\( = \left( {{{\sin }^2}2^\circ + {{\sin }^2}88^\circ } \right) + \left( {{{\sin }^2}4^\circ + {{\sin }^2}86^\circ } \right) + ... + \left( {{{\sin }^2}44^\circ + {{\sin }^2}46^\circ } \right)\)
\( = \left( {{{\sin }^2}2^\circ + {{\cos }^2}2^\circ } \right) + \left( {{{\sin }^2}4^\circ + {{\cos }^2}4^\circ } \right) + ... + \left( {{{\sin }^2}44^\circ + {{\cos }^2}44^\circ } \right)\) (do 2 góc phụ nhau sin góc này bằng cos góc kia)
= 1 + 1 + 1 +....+ 1 = 22 .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.