Câu hỏi:

12/07/2024 4,482

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh A, \(\widehat {BAD} = 120^\circ \). Hai mặt phẳng (SAB) và (SCD) cùng vuông góc với mặt đáy, (SC;(ABCD)) = 45°. Gọi G là trọng tâm ∆ABC, tính khoảng cách h từ G đến (SCD) theo a.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hai mặt phẳng (SAB) và (SCD) cắt nhau theo giao tuyến SA và cùng vuông góc với (ABCD) nên SA (ABCD). Gọi M, N lần lượt là trung điểm của AB, Cd khi đó G = CM ∩ BO. Ta có:

AM // CD d(M, (SCD)) = d(A, (SCD)). Lại có

\(\frac{{GC}}{{MC}} = \frac{2}{3} \Rightarrow d\left( {G,\left( {SCD} \right)} \right) = \frac{2}{3}d\left( {M,\left( {SCD} \right)} \right) = \frac{2}{3}d\left( {A,\left( {SCD} \right)} \right)\). ∆ACD đều nên AN CD, mà CD SA CD (SAN) (SAN) (SCD)

Dựng AK SN AK (SCD) d(A, (SCD)) = AK. Do SA (ABCD) nên AC là hình chiếu của SC lên mặt phẳng (ABCD) suy ra (SC, (ABCD)) = (SC, AC) = \(\widehat {SCA} = 45^\circ \)

AC = SA = a. Ta tính được AN = \(\frac{{a\sqrt 3 }}{2}\). ∆SAN vuông tại A, đường cao AK nên ta có:

\(\frac{1}{{A{K^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{N^2}}} = \frac{1}{{{a^2}}} + \frac{4}{{3{a^2}}} = \frac{7}{{3{a^2}}} \Rightarrow AK = \frac{{a\sqrt {21} }}{7}\).

Vậy d(G, (SCD)) = \(\frac{2}{3}AK = \frac{{2a\sqrt {21} }}{{21}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của các đoạn BC, CD, SO. Tìm giao tuyến của (MNP) với các mặt phẳng (SAB), (SAD), (SBC) và (SCD).

Xem đáp án » 12/07/2024 144,791

Câu 2:

Tính tổng: \({\sin ^2}2^\circ + {\sin ^2}4^\circ + {\sin ^2}6^\circ + ... + {\sin ^2}84^\circ + {\sin ^2}86^\circ + {\sin ^2}88^\circ \).

Xem đáp án » 12/07/2024 28,260

Câu 3:

Giá trị của

\(M = {\cos ^2}15 + {\cos ^2}25 + {\cos ^2}35 + {\cos ^2}45 + {\cos ^2}105 + {\cos ^2}115 + {\cos ^2}125\)là ?

Xem đáp án » 12/07/2024 5,001

Câu 4:

Cho hình thang ABCD (AB // CD) có AD = CD và AC BC. Từ C kẻ đường thẳng song song với AD và cắt AB tại E.

a. Chứng minh tứ giác AECD là hình thoi.

b. Chứng minh tứ giác BEDC là hình bình hành.

c. Chứng minh ∆CEB cân.

Xem đáp án » 12/07/2024 4,059

Câu 5:

Một tòa nhà có n tầng, các tần được đánh số từ 1 đến n theo thứ tự từ dưới lên trên. Có 4 thang máy đang ở tầng 1. Biết rằng mỗi thang máy có thể dừng ở đúng 3 tầng (không kể tầng 1) và 3 tầng này không là 3 tầng số nguyên liên tiếp với 2 tầng bất kì (khác tầng 1) của tòa nhà luôn có 1 thang máy dừng được ở cả 2 tầng này. Hỏi GTLN của n là bao nhiêu?

Xem đáp án » 12/07/2024 3,288

Câu 6:

Tìm GTNN của biểu thức \(A = \frac{{x + 7}}{{\sqrt x + 3}}\).

Xem đáp án » 12/07/2024 3,101

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store