Câu hỏi:
12/07/2024 5,337Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh A, \(\widehat {BAD} = 120^\circ \). Hai mặt phẳng (SAB) và (SCD) cùng vuông góc với mặt đáy, (SC;(ABCD)) = 45°. Gọi G là trọng tâm ∆ABC, tính khoảng cách h từ G đến (SCD) theo a.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Hai mặt phẳng (SAB) và (SCD) cắt nhau theo giao tuyến SA và cùng vuông góc với (ABCD) nên SA ⊥ (ABCD). Gọi M, N lần lượt là trung điểm của AB, Cd khi đó G = CM ∩ BO. Ta có:
AM // CD ⇒ d(M, (SCD)) = d(A, (SCD)). Lại có
\(\frac{{GC}}{{MC}} = \frac{2}{3} \Rightarrow d\left( {G,\left( {SCD} \right)} \right) = \frac{2}{3}d\left( {M,\left( {SCD} \right)} \right) = \frac{2}{3}d\left( {A,\left( {SCD} \right)} \right)\). ∆ACD đều nên AN ⊥ CD, mà CD ⊥ SA ⇒ CD ⊥ (SAN) ⇒ (SAN) ⊥ (SCD)
Dựng AK ⊥ SN ⇒ AK ⊥ (SCD) ⇒ d(A, (SCD)) = AK. Do SA ⊥ (ABCD) nên AC là hình chiếu của SC lên mặt phẳng (ABCD) suy ra (SC, (ABCD)) = (SC, AC) = \(\widehat {SCA} = 45^\circ \)
⇒ AC = SA = a. Ta tính được AN = \(\frac{{a\sqrt 3 }}{2}\). ∆SAN vuông tại A, đường cao AK nên ta có:
\(\frac{1}{{A{K^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{N^2}}} = \frac{1}{{{a^2}}} + \frac{4}{{3{a^2}}} = \frac{7}{{3{a^2}}} \Rightarrow AK = \frac{{a\sqrt {21} }}{7}\).
Vậy d(G, (SCD)) = \(\frac{2}{3}AK = \frac{{2a\sqrt {21} }}{{21}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của các đoạn BC, CD, SO. Tìm giao tuyến của (MNP) với các mặt phẳng (SAB), (SAD), (SBC) và (SCD).
Câu 2:
Tính tổng: \({\sin ^2}2^\circ + {\sin ^2}4^\circ + {\sin ^2}6^\circ + ... + {\sin ^2}84^\circ + {\sin ^2}86^\circ + {\sin ^2}88^\circ \).
Câu 4:
Giá trị của
\(M = {\cos ^2}15 + {\cos ^2}25 + {\cos ^2}35 + {\cos ^2}45 + {\cos ^2}105 + {\cos ^2}115 + {\cos ^2}125\)là ?
Câu 5:
Cho hình thang ABCD (AB // CD) có AD = CD và AC ⊥ BC. Từ C kẻ đường thẳng song song với AD và cắt AB tại E.
a. Chứng minh tứ giác AECD là hình thoi.
b. Chứng minh tứ giác BEDC là hình bình hành.
c. Chứng minh ∆CEB cân.
Câu 6:
Xếp ngẫu nhiên 5 học sinh A, B, C, D, E ngồi vào 1 dãy 5 ghế thẳng hàng (mỗi bạn ngồi 1 ghế). Tính xác suất để 2 bạn A và B không ngồi cạnh nhau.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
về câu hỏi!