Câu hỏi:

13/07/2024 1,669

Cho hình chữ nhật ABCD, M là điểm bất kì nằm trong hình chữ nhật. Chứng minh rằng: MA2 + MC2 = MB2 + MD2.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chữ nhật ABCD, M là điểm bất kì nằm trong hình chữ nhật. Chứng minh (ảnh 1)

Gọi K là giao điểm của hai đường chéo AC và BD suy ra K là trung điểm của AC và BD.

Trong \(\Delta MAC\) có:

\(M{A^2} + M{C^2} = 2M{K^2} + \frac{1}{2}A{C^2}\) (1) (công thức trung tuyến).

Trong \(\Delta MBD\): \(M{B^2} + M{D^2} = 2M{K^2} + \frac{1}{2}B{D^2}\) (2) (công thức trung tuyến)

Mặt khác AC = BD (3) (đường chéo hình chữ nhật)

Từ (1) và (2), (3) suy ra MA2 + MC2 = MB2 + MD2 (đpcm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: 3x(x – 1) + x – 1 = 0

\( \Leftrightarrow \)3x(x – 1) + (x – 1) = 0

\( \Leftrightarrow \)(x – 1)(3x + 1) = 0

\( \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\3x + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = \frac{{ - 1}}{3}\end{array} \right.\).

Lời giải

4x2 – 25 – (2x – 5)(2x + 7) = 0

\( \Leftrightarrow \)[(2x)2 – 52] – (2x – 5)(2x + 7) = 0

\( \Leftrightarrow \)(2x – 5)(2x + 5) – (2x – 5)(2x + 7) = 0

\( \Leftrightarrow \)(2x – 5)(2x + 5 – 2x – 7) = 0

\( \Leftrightarrow \)(2x – 5)(−2) = 0

\( \Leftrightarrow \)2x – 5 = 0

\( \Leftrightarrow x = \frac{5}{2}\).

Vậy \(x = \frac{5}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP