Câu hỏi:

20/04/2023 161 Lưu

Tìm GTLN của A2, biết: \(A = \sqrt {x + 4} + \sqrt {4 - x} \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

ĐK: −4 ≤ x ≤ 4.

Ta có:\(A = \sqrt {x + 4} + \sqrt {4 - x} \)

\( \Leftrightarrow \)\({A^2} = {\left( {\sqrt {x + 4} + \sqrt {4 - x} } \right)^2}\)

\( = x + 4 + 4 - x + 2\sqrt {\left( {x + 4} \right)\left( {4 - x} \right)} \)

\( = 4 + 2\sqrt {16 - {x^2}} \)

Với −4 ≤ x ≤ 4 \( \Rightarrow \sqrt {16 - {x^2}} \le \sqrt {16} = 4\) nên suy ra:

A2 ≤ 4 + 2.4 = 12

Khi đó: A2max = 12

Dấu “=” xảy ra khi: x2 = 0 \( \Leftrightarrow \)x = 0 (TMĐK)

Vậy với x = 0 thì A2max = 12.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: 3x(x – 1) + x – 1 = 0

\( \Leftrightarrow \)3x(x – 1) + (x – 1) = 0

\( \Leftrightarrow \)(x – 1)(3x + 1) = 0

\( \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\3x + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = \frac{{ - 1}}{3}\end{array} \right.\).

Lời giải

4x2 – 25 – (2x – 5)(2x + 7) = 0

\( \Leftrightarrow \)[(2x)2 – 52] – (2x – 5)(2x + 7) = 0

\( \Leftrightarrow \)(2x – 5)(2x + 5) – (2x – 5)(2x + 7) = 0

\( \Leftrightarrow \)(2x – 5)(2x + 5 – 2x – 7) = 0

\( \Leftrightarrow \)(2x – 5)(−2) = 0

\( \Leftrightarrow \)2x – 5 = 0

\( \Leftrightarrow x = \frac{5}{2}\).

Vậy \(x = \frac{5}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP