Câu hỏi:
13/07/2024 188Cho tam giác ABC (AB > AC) có đường cao AH . Gọi M , N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh: MNPH là hình thang cân.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có:
N là trung điểm của AC;
P là trung điểm của AB.
Suy ra NP là đường trung bình của ∆ABC.
Suy ra MP // BC
Suy ra MNPH là hình thang (1).
Ta có:
\(\widehat B = \widehat {NMC}\) (đồng vị, AB // MN)
\(\widehat B = \widehat {PHB}\) (\(\Delta PHB\) cân)
Suy ra \(\widehat {NMC} = \widehat {PHB}\) \( \Rightarrow \widehat {NMH} = \widehat {PHM}\)(2)
Từ (1) và (2) suy ra được tứ giác MNPH là hình thang cân.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Phân tích đa thức thành nhân tử: 12x2 + 5x – 12y2 + 12y – 10xy – 3
Câu 4:
Năm nay Lan được 12 tuổi còn mẹ của Lan thì được 32 tuổi. Hỏi sau 8 năm nữa thì số tuổi của mẹ gấp mấy lần số tuổi của Lan?
Câu 5:
Xét tính chẵn lẻ của hàm số:
F(x) = sin2007x + cos nx, với n ∈ ℤ:
về câu hỏi!