Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đặt t = sinx + cosx = \(\sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right)\)
Vì \(\sin \left( {x + \frac{\pi }{4}} \right) \in \left[ { - 1;1} \right] \Rightarrow t \in \left[ { - \sqrt 2 ;\sqrt 2 } \right]\)
Ta có \({t^2} = {\left( {\sin x + \cos x} \right)^2} = {\sin ^2}x + {\cos ^2}x + 2\sin x\cos x \Rightarrow \sin x\cos x = \frac{{{t^2} - 1}}{2}\).
Khi đó, phương trình đã cho trở thành:
\(\frac{{{t^2} - 1}}{2} + 2t = 2 \Leftrightarrow {t^2} + 4t - 5 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{t = 1}\\{t = - 5\left( l \right)}\end{array}} \right.\)
Với t = 1, ta được sinx + cosx = 1 \( \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \frac{1}{{\sqrt 2 }} \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \sin \frac{\pi }{4}\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x + \frac{\pi }{4} = \frac{\pi }{4} + k2\pi }\\{x + \frac{\pi }{4} = \pi - \frac{\pi }{4} + k2\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = k2\pi }\\{x = \frac{\pi }{2} + k2\pi }\end{array}} \right.,k \in \mathbb{Z}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác \(\widehat A\).
Câu 2:
Cho \(\cos x = \frac{2}{{\sqrt 5 }},0 < x < \frac{\pi }{2}\). Tính các giá trị lượng giác của góc x.
Câu 3:
Cho ∆ABC có \(\frac{5}{{\sin A}} = \frac{4}{{\sin B}} = \frac{3}{{\sin C}}\) và a = 10. Tính chu vi tam giác.
Câu 4:
Cho tana = 2. Tính giá trị của biểu thức \(C = \frac{{\sin a}}{{{{\sin }^3}a + 2{{\cos }^3}a}}\).
Câu 5:
Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?
Câu 6:
Chứng minh rằng: \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\).
về câu hỏi!