Hai đường thẳng xy và zt cắt nhau tại O sao cho \(\widehat {xOz} = 70^\circ \).
a. Tính số đo các góc tạo thành.
b. Vẽ tia Om là tia phân giác của \(\widehat {zOy}\) và vẽ tia On là tia đối của tia Om.
Tính số đo \(\widehat {xOn}\), từ đó chỉ ra tia Ox không là tia phân giác của \(\widehat {zOn}\).
Hai đường thẳng xy và zt cắt nhau tại O sao cho \(\widehat {xOz} = 70^\circ \).
a. Tính số đo các góc tạo thành.
b. Vẽ tia Om là tia phân giác của \(\widehat {zOy}\) và vẽ tia On là tia đối của tia Om.
Tính số đo \(\widehat {xOn}\), từ đó chỉ ra tia Ox không là tia phân giác của \(\widehat {zOn}\).
Quảng cáo
Trả lời:

a.
\(\widehat {tOy} = \widehat {xOz} = 70^\circ \) (hai góc đối đỉnh)
\(\widehat {xOt} = \widehat {zOy} = 180^\circ - 70^\circ = 110^\circ \) (tính chất góc kề bù).
b. \(\widehat {xOn} = \widehat {yOm} = \frac{{\widehat {zOy}}}{2} = \frac{{110^\circ }}{2} = 55^\circ \).
Vì \(\widehat {xOz} > \widehat {xOn}\)
Nên Ox không là phân giác của \(\widehat {zOn}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Áp dụng định lí hàm số côsin cho ∆ABC ta có: \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.cos60^\circ = \sqrt 7 \)
Gọi AH là đường phân giác góc A.
Áp dụng tính chất đường phân giác cho ∆ABC: \(\frac{{AB}}{{AC}} = \frac{{BH}}{{HC}}\)
\(\frac{{AB}}{{BH}} = \frac{{AC}}{{HC}} = \frac{{AB + AC}}{{BH + HC}} = \frac{{2 + 3}}{{BC}} = \frac{5}{{\sqrt 7 }}\)
\( \Rightarrow BH = AB:\frac{5}{{\sqrt 7 }} = \frac{{2\sqrt 7 }}{5}\)
\(\cos \widehat B = \frac{{A{C^2} - A{B^2} - B{C^2}}}{{ - 2AB.BC}} = \frac{{\sqrt 7 }}{{14}}\)
Xét ∆ABH có: \(A{H^2} = A{B^2} + B{H^2} - 2.AB.BH.cos\widehat B = \frac{{108}}{{25}} \Rightarrow AH = \frac{{6\sqrt 3 }}{5}\).
Lời giải
Ta có: 0 < x < \(\frac{\pi }{2} \Rightarrow \left\{ {\begin{array}{*{20}{c}}{\sin x > 0}\\{\cos x > 0}\end{array}} \right.\)
+) \({\cos ^2}x + {\sin ^2}x = 1 \Leftrightarrow {\frac{2}{{\sqrt 5 }}^2} + {\sin ^2}x = 1\)
\( \Leftrightarrow {\sin ^2}x = \frac{1}{5} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\sin x = \frac{1}{{\sqrt 5 }}\left( {TM} \right)}\\{\sin x = - \frac{1}{{\sqrt 5 }}\left( L \right)}\end{array}} \right.\)
\( + )1 + {\cos ^2}x = \frac{1}{{{{\cos }^2}x}} \Leftrightarrow 1 + {\cos ^2}x = \frac{1}{{{{\left( {\frac{2}{{\sqrt 5 }}} \right)}^2}}}\)
\( \Leftrightarrow {\tan ^2}x = \frac{1}{4} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\tan x = \frac{1}{2}(TM)}\\{{\mathop{\rm t}\nolimits} = - \frac{1}{2}(L)}\end{array}} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.