Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
y = 6sin2x – 8cos2x – 2 \( = 10\left( {\frac{3}{5}\sin 2x - \frac{4}{5}\cos 2x} \right) - 2\)
Đặt \(\cos \alpha = \frac{3}{5};\sin \alpha = \frac{4}{5}\)
Khi đó
y = 10(cosα sin2x – sinα cos2x) – 2 = 10sin(2x – α) – 2
Ta có: –1 ≤ sin(2x – α) ≤ 1 \( \Leftrightarrow - 10 \le 10\sin \left( {2x - \alpha } \right) \le 10 \Leftrightarrow - 12 \le y \le 8\left( {\forall x \in \mathbb{R}} \right)\)
\[Ma{x_y} = 8\] khi sin(2x – α) = 1
\( \Leftrightarrow 2x - \alpha = \frac{\pi }{2} + k2\pi \Leftrightarrow x = \frac{\pi }{4} + \frac{\alpha }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác \(\widehat A\).
Câu 2:
Cho \(\cos x = \frac{2}{{\sqrt 5 }},0 < x < \frac{\pi }{2}\). Tính các giá trị lượng giác của góc x.
Câu 3:
Cho ∆ABC có \(\frac{5}{{\sin A}} = \frac{4}{{\sin B}} = \frac{3}{{\sin C}}\) và a = 10. Tính chu vi tam giác.
Câu 4:
Cho tana = 2. Tính giá trị của biểu thức \(C = \frac{{\sin a}}{{{{\sin }^3}a + 2{{\cos }^3}a}}\).
Câu 5:
Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?
Câu 6:
Chứng minh rằng: \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\).
về câu hỏi!