Câu hỏi:
27/04/2023 78Giải phương trình: \(2{\sin ^2}x + \sin x\cos x - {\cos ^2}x = 0\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
TH1: Nếu cosx = 0 là nghiệm của phương trình đã cho: cosx = 0 \( \Leftrightarrow {\sin ^2}x = 1\) không thỏa mãn phương trình.
TH2: cosx ≠ 0, chia cả 2 vế của phương trình cho \({\cos ^2}x\) ta được:
\(2{\tan ^2}x + \tan x - 1 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\tan x = - 1}\\{\tan x = \frac{1}{2}}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - \frac{\pi }{4} + k\pi }\\{x = \arctan \frac{1}{2} + k\pi }\end{array}} \right.\left( {k \in \mathbb{Z}} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác \(\widehat A\).
Câu 2:
Cho \(\cos x = \frac{2}{{\sqrt 5 }},0 < x < \frac{\pi }{2}\). Tính các giá trị lượng giác của góc x.
Câu 3:
Cho ∆ABC có \(\frac{5}{{\sin A}} = \frac{4}{{\sin B}} = \frac{3}{{\sin C}}\) và a = 10. Tính chu vi tam giác.
Câu 4:
Cho tana = 2. Tính giá trị của biểu thức \(C = \frac{{\sin a}}{{{{\sin }^3}a + 2{{\cos }^3}a}}\).
Câu 5:
Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?
Câu 6:
Chứng minh rằng: \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\).
về câu hỏi!