Câu hỏi:
11/07/2024 147Giải phương trình: \(2{\sin ^2}x - \sin x\cos x - {\cos ^2}x = 2\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\(2{\sin ^2}x - \sin x\cos x - {\cos ^2}x = 2 \Leftrightarrow 1 - \cos 2x - \frac{1}{2}\sin 2x - \frac{{1 + \cos 2x}}{2} = 2\)
\( \Leftrightarrow 2 - 2\cos 2x - \sin 2x - 1 - \cos 2x = 4 \Leftrightarrow - 3\cos 2x - \sin 2x = 3\)
\( \Leftrightarrow \frac{{ - 3}}{{\sqrt {10} }}\cos 2x - \frac{1}{{\sqrt {10} }}\sin 2x = \frac{3}{{\sqrt {10} }}\)
Đặt \(\cos a = - \frac{3}{{\sqrt {10} }},\sin a = \frac{1}{{\sqrt {10} }}\)
\( \Leftrightarrow \cos \left( {a + 2x} \right) = \frac{3}{{\sqrt {10} }} \Leftrightarrow a + 2x = \arccos \frac{3}{{\sqrt {10} }} + k2\pi \) \(\left( {k \in \mathbb{Z}} \right)\)
Hoặc a + 2x = –arc\(\cos \frac{3}{{\sqrt {10} }} + k2\pi \) \(\left( {k \in \mathbb{Z}} \right)\)
\( \Rightarrow x = \arccos \frac{3}{{\sqrt {10} }} + k\pi - \frac{a}{2}\) hoặc 2x = –arc\(\cos \frac{3}{{2\sqrt {10} }} + k\pi - \frac{a}{2}\) \(\left( {k \in \mathbb{Z}} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác \(\widehat A\).
Câu 2:
Cho \(\cos x = \frac{2}{{\sqrt 5 }},0 < x < \frac{\pi }{2}\). Tính các giá trị lượng giác của góc x.
Câu 3:
Cho ∆ABC có \(\frac{5}{{\sin A}} = \frac{4}{{\sin B}} = \frac{3}{{\sin C}}\) và a = 10. Tính chu vi tam giác.
Câu 4:
Cho tana = 2. Tính giá trị của biểu thức \(C = \frac{{\sin a}}{{{{\sin }^3}a + 2{{\cos }^3}a}}\).
Câu 5:
Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?
Câu 6:
Chứng minh rằng: \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\).
về câu hỏi!