Câu hỏi:

13/07/2024 3,019

Chứng minh: \(\left( {{n^4} - 14{n^3} + 71{n^2} - 154n + 120} \right)\,\, \vdots \,\,24\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(\begin{array}{l}{n^4} - 14{n^3} + 71{n^2} - 154n + 120\\ = \left( {{n^4} - 14{n^3} + 49{n^2}} \right) + 22{n^2} - 154n + 120\end{array}\)

\(\begin{array}{l} = {n^2}\left( {{n^2} - 14n + 49} \right) + 22n\left( {{n^2} - 7} \right) + 120\\ = {\left( {n\left( {n - 7} \right)} \right)^2} + 10n\left( {n - 7} \right) + 12n\left( {n - 7} \right) + 10.12\end{array}\)

\(\begin{array}{l} = n\left( {n - 7} \right)\left[ {n\left( {n - 7} \right) + 10} \right] + 12\left[ {n\left( {n - 7} \right) + 10} \right]\\ = \left[ {n\left( {n - 7} \right) + 10} \right].\left[ {n\left( {n - 7} \right) + 12} \right]\end{array}\)

\(\begin{array}{l} = \left( {{n^2} - 7n + 10} \right)\left( {{n^2} - 7n + 12} \right)\\ = \left( {n - 2} \right)\left( {n - 5} \right)\left( {n - 3} \right)\left( {n - 4} \right)\\ = \left( {n - 5} \right)\left( {n - 4} \right)\left( {n - 3} \right)\left( {n - 2} \right)\end{array}\)

Đặt \(B = \left( {n - 5} \right)\left( {n - 4} \right)\left( {n - 3} \right)\left( {n - 2} \right)\).

Ta có B là tích của 4 số tự nhiên liên tiế .

Trong 4 số liên tiếp luôn có 2 số chẵn, một số chia cho 4, số còn lại chia hết cho 2. Ngoài ra có ít nhất 1 số chia hết cho 3.

Vì vậy B luôn chia hết cho 4.3.2 = 24.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có AB = 2, AC = 3, góc A = 60 độ. Tính độ dài phân giác góc A (ảnh 1)

Áp dụng định lí hàm số côsin cho ∆ABC ta có: \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.cos60^\circ  = \sqrt 7 \)

Gọi AH là đường phân giác góc A.

Áp dụng tính chất đường phân giác cho ∆ABC: \(\frac{{AB}}{{AC}} = \frac{{BH}}{{HC}}\)

\(\frac{{AB}}{{BH}} = \frac{{AC}}{{HC}} = \frac{{AB + AC}}{{BH + HC}} = \frac{{2 + 3}}{{BC}} = \frac{5}{{\sqrt 7 }}\)

\( \Rightarrow BH = AB:\frac{5}{{\sqrt 7 }} = \frac{{2\sqrt 7 }}{5}\)

\(\cos \widehat B = \frac{{A{C^2} - A{B^2} - B{C^2}}}{{ - 2AB.BC}} = \frac{{\sqrt 7 }}{{14}}\)

Xét ∆ABH có: \(A{H^2} = A{B^2} + B{H^2} - 2.AB.BH.cos\widehat B = \frac{{108}}{{25}} \Rightarrow AH = \frac{{6\sqrt 3 }}{5}\).

Lời giải

Ta có: 0 < x < \(\frac{\pi }{2} \Rightarrow \left\{ {\begin{array}{*{20}{c}}{\sin x > 0}\\{\cos x > 0}\end{array}} \right.\)

+) \({\cos ^2}x + {\sin ^2}x = 1 \Leftrightarrow {\frac{2}{{\sqrt 5 }}^2} + {\sin ^2}x = 1\)

\( \Leftrightarrow {\sin ^2}x = \frac{1}{5} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\sin x = \frac{1}{{\sqrt 5 }}\left( {TM} \right)}\\{\sin x = - \frac{1}{{\sqrt 5 }}\left( L \right)}\end{array}} \right.\)

\( + )1 + {\cos ^2}x = \frac{1}{{{{\cos }^2}x}} \Leftrightarrow 1 + {\cos ^2}x = \frac{1}{{{{\left( {\frac{2}{{\sqrt 5 }}} \right)}^2}}}\)

\( \Leftrightarrow {\tan ^2}x = \frac{1}{4} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\tan x = \frac{1}{2}(TM)}\\{{\mathop{\rm t}\nolimits} = - \frac{1}{2}(L)}\end{array}} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP