Câu hỏi:
13/07/2024 99Cho \(A = 4{a^2}{b^2} - \left( {{a^2} + {b^2} - {c^2}} \right)\). Trong đó a, b, c là độ dài 3 cạnh của 1 tam giác. Chứng minh A > 0.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\(A = 4{a^2}{b^2} - {\left( {{a^2} + {b^2} - {c^2}} \right)^2} = \left( {2ab - {a^2} - {b^2} + {c^2}} \right)\left( {2ab + {a^2} + {b^2} - {c^2}} \right)\)
\(\begin{array}{l} = \left[ {{c^2} - {{\left( {a - b} \right)}^2}} \right]\left[ {{{\left( {a + b} \right)}^2} - {c^2}} \right]\\ = \left( {c - a + b} \right)\left( {c + a - b} \right)\left( {a + b + c} \right)\left( {a + b - c} \right)\end{array}\)
Vì a, b, c là ba cạnh của tam giác nên theo bất đẳng thức tam giác thì ta có:
b + c – a > 0, a + c – b > 0, a + b – c > 0
Lại có: a + b + c > 0
Vậy A > 0.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác \(\widehat A\).
Câu 2:
Cho \(\cos x = \frac{2}{{\sqrt 5 }},0 < x < \frac{\pi }{2}\). Tính các giá trị lượng giác của góc x.
Câu 3:
Cho ∆ABC có \(\frac{5}{{\sin A}} = \frac{4}{{\sin B}} = \frac{3}{{\sin C}}\) và a = 10. Tính chu vi tam giác.
Câu 4:
Cho tana = 2. Tính giá trị của biểu thức \(C = \frac{{\sin a}}{{{{\sin }^3}a + 2{{\cos }^3}a}}\).
Câu 5:
Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?
Câu 6:
Chứng minh rằng: \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\).
về câu hỏi!