Câu hỏi:
11/07/2024 566Với mọi số thực a, b, c. Chứng minh rằng: \({a^2} + 5{b^2} - 4ab + 2a - 6b + 3 > 0\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\(\begin{array}{l}{a^2} + 5{b^2} - 4ab + 2a - 6b + 3\\ = {a^2} - 4ab + 4{b^2} + 2a - 4b + 1 + {b^2} - 2b + 1 + 1\end{array}\)
\(\begin{array}{l} = {\left( {a - 2b} \right)^2} + 2\left( {a - 2b} \right) + 1 + {\left( {b - 1} \right)^2} + 1\\ = {\left( {a - 2b + 1} \right)^2} + {\left( {b - 1} \right)^2} + 1 > 0\end{array}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác \(\widehat A\).
Câu 2:
Cho \(\cos x = \frac{2}{{\sqrt 5 }},0 < x < \frac{\pi }{2}\). Tính các giá trị lượng giác của góc x.
Câu 3:
Cho ∆ABC có \(\frac{5}{{\sin A}} = \frac{4}{{\sin B}} = \frac{3}{{\sin C}}\) và a = 10. Tính chu vi tam giác.
Câu 4:
Cho tana = 2. Tính giá trị của biểu thức \(C = \frac{{\sin a}}{{{{\sin }^3}a + 2{{\cos }^3}a}}\).
Câu 5:
Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?
Câu 6:
Chứng minh rằng: \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\).
về câu hỏi!