Câu hỏi:
13/07/2024 390Cho a, b, c > 0 và a + b + c = 1. Chứng minh \(\sqrt {4a + 1} + \sqrt {4b + 1} + \sqrt {4c + 1} < 5\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Áp dụng BĐT Cô–si cho 3 số không âm ta có:
\(\frac{{4a + 1 + 1}}{2} \ge \sqrt {4a + 1} \Leftrightarrow \frac{{4a + 2}}{2} \ge \sqrt {4a + 1} \Leftrightarrow 2a + 1 \ge \sqrt {4a + 1} \)
Mà a > 0 nên \(2a + 1 > \sqrt {4a + 1} \)
Tương tự với \(\sqrt {4b + 1} \) và \(\sqrt {4c + 1} \) ta có:
\(2b + 1 > \sqrt {4b + 1} ;2c + 1 > \sqrt {4c + 1} \)
\( \Rightarrow \sqrt {4a + 1} + \sqrt {4b + 1} + \sqrt {4c + 1} < 2a + 1 + 2b + 1 + 2c + 1\)
\( = 2\left( {a + b + c} \right) + 3 = 2.1 + 3 = 5\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác \(\widehat A\).
Câu 2:
Cho \(\cos x = \frac{2}{{\sqrt 5 }},0 < x < \frac{\pi }{2}\). Tính các giá trị lượng giác của góc x.
Câu 3:
Cho ∆ABC có \(\frac{5}{{\sin A}} = \frac{4}{{\sin B}} = \frac{3}{{\sin C}}\) và a = 10. Tính chu vi tam giác.
Câu 4:
Cho tana = 2. Tính giá trị của biểu thức \(C = \frac{{\sin a}}{{{{\sin }^3}a + 2{{\cos }^3}a}}\).
Câu 5:
Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?
Câu 6:
Chứng minh rằng: \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\).
về câu hỏi!