Câu hỏi:

19/08/2025 927 Lưu

Cho a, b, c > 0 và a + b + c = 1. Chứng minh \(\sqrt {4a + 1} + \sqrt {4b + 1} + \sqrt {4c + 1} < 5\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Áp dụng BĐT Cô–si cho 3 số không âm ta có:

\(\frac{{4a + 1 + 1}}{2} \ge \sqrt {4a + 1} \Leftrightarrow \frac{{4a + 2}}{2} \ge \sqrt {4a + 1} \Leftrightarrow 2a + 1 \ge \sqrt {4a + 1} \)

Mà a > 0 nên \(2a + 1 > \sqrt {4a + 1} \)

Tương tự với \(\sqrt {4b + 1} \)\(\sqrt {4c + 1} \) ta có:

\(2b + 1 > \sqrt {4b + 1} ;2c + 1 > \sqrt {4c + 1} \)

\( \Rightarrow \sqrt {4a + 1} + \sqrt {4b + 1}  + \sqrt {4c + 1} < 2a + 1 + 2b + 1 + 2c + 1\)

\( = 2\left( {a + b + c} \right) + 3 = 2.1 + 3 = 5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có AB = 2, AC = 3, góc A = 60 độ. Tính độ dài phân giác góc A (ảnh 1)

Áp dụng định lí hàm số côsin cho ∆ABC ta có: \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.cos60^\circ  = \sqrt 7 \)

Gọi AH là đường phân giác góc A.

Áp dụng tính chất đường phân giác cho ∆ABC: \(\frac{{AB}}{{AC}} = \frac{{BH}}{{HC}}\)

\(\frac{{AB}}{{BH}} = \frac{{AC}}{{HC}} = \frac{{AB + AC}}{{BH + HC}} = \frac{{2 + 3}}{{BC}} = \frac{5}{{\sqrt 7 }}\)

\( \Rightarrow BH = AB:\frac{5}{{\sqrt 7 }} = \frac{{2\sqrt 7 }}{5}\)

\(\cos \widehat B = \frac{{A{C^2} - A{B^2} - B{C^2}}}{{ - 2AB.BC}} = \frac{{\sqrt 7 }}{{14}}\)

Xét ∆ABH có: \(A{H^2} = A{B^2} + B{H^2} - 2.AB.BH.cos\widehat B = \frac{{108}}{{25}} \Rightarrow AH = \frac{{6\sqrt 3 }}{5}\).

Lời giải

\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}}\)

\(\frac{{\sin A}}{{\sin B}} = \frac{a}{b} = \frac{5}{4}\), b = 8

\(\frac{a}{{\sin A}} = \frac{c}{{\sin C}}\)

\(\frac{{\sin A}}{{\sin C}} = \frac{a}{c} = \frac{5}{3}\), c = 6

Chu vi là: 8 + 6 + 10 = 24.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP