Câu hỏi:
11/07/2024 863Cho ∆ABC có các góc thỏa mãn \(\frac{{\sin A}}{1} = \frac{{\sin B}}{2} = \frac{{\sin C}}{3}\). Tính số đo các góc của tam giác.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R \Rightarrow \sin A = \frac{a}{{2R}};\sin B = \frac{b}{{2R}};\sin C = \frac{c}{{2R}}\)
Theo bài ta có: \(\frac{{\sin A}}{1} = \frac{{\sin B}}{2} = \frac{{\sin C}}{3} \Rightarrow \frac{{\frac{a}{{2R}}}}{1} = \frac{{\frac{b}{{2R}}}}{2} = \frac{{\frac{c}{{2R}}}}{{\sqrt 3 }} \Rightarrow \frac{a}{1} = \frac{b}{2} = \frac{c}{{\sqrt 3 }}\)
Đặt \(\frac{a}{1} = \frac{b}{2} = \frac{c}{{\sqrt 3 }} = t\)
\( \Rightarrow a = t;b = 2t;c = t\sqrt 3 \Rightarrow {a^2} = {t^2};b = 4{t^2};c = 3{t^2}\)
Ta thấy: \({a^2} + {c^2} = {b^2} = 4{t^2}\)
Theo định lí Pytago đảo ta có ∆ABC vuông tại B.
\( \Rightarrow \sin B = 1 \Rightarrow \frac{{\sin A}}{1} = \frac{1}{2} = \frac{{\sin C}}{{\sqrt 3 }}\)
\( \Rightarrow \sin A = \frac{1}{2}\) và \(\sin C = \frac{{\sqrt 3 }}{2}\)
\( \Rightarrow \sin A = \frac{1}{2}\) và \(\sin C = \frac{{\sqrt 3 }}{2}\)
\( \Rightarrow \widehat A = 30^\circ \) và \(\widehat C = 60^\circ \)
Vậy \(\widehat A = 30^\circ ;\widehat B = 90^\circ ;\widehat C = 60^\circ \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác \(\widehat A\).
Câu 2:
Cho \(\cos x = \frac{2}{{\sqrt 5 }},0 < x < \frac{\pi }{2}\). Tính các giá trị lượng giác của góc x.
Câu 3:
Cho ∆ABC có \(\frac{5}{{\sin A}} = \frac{4}{{\sin B}} = \frac{3}{{\sin C}}\) và a = 10. Tính chu vi tam giác.
Câu 4:
Cho tana = 2. Tính giá trị của biểu thức \(C = \frac{{\sin a}}{{{{\sin }^3}a + 2{{\cos }^3}a}}\).
Câu 5:
Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?
Câu 6:
Chứng minh rằng: \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\).
về câu hỏi!