Câu hỏi:
27/04/2023 191Cho ∆ABC cân tại B, AB = a, đường trung tuyến BM. Gọi I là trung điểm của BC, E là điểm đối xứng với M qua I.
a. Tứ giác MCEB là hình gì?
b. Chứng minh tứ giác ABEM là hình bình hành.
c. Tìm điều kiện của ∆ABC để tứ giác MCEB là hình vuông.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
a. Xét tứ giác BMCE có 2 đường chéo
BC và ME cắt nhau tại trung điểm I của mỗi đường
⇒ Tứ giác BMCE là hình bình hành (1)
Vì ∆BAC cân tại B có M là trung điểm của AC ⇒ trung tuyến BM đồng thời là đồng thời là đường cao ⇒ \(\widehat {BMC} = 90^\circ \) (2)
Từ (1) và (2) ⇒ Tứ giác BMCE là hình chữ nhật.
b. Vì tứ giác BMCE là hình chữ nhật (cmt) ⇒ BE // MC
BE = MC; MC = MA ⇒ MA = BE
Có BE // MC ⇒ BE // AM (vì M ∈ AC)
Xét tứ giác ABEM có: \(\left\{ {\begin{array}{*{20}{c}}{BE//AM}\\{BE = AM}\end{array}} \right.\) ⇒ tứ giác ABEM là hình bình hành.
Vậy tứ giác ABEM là hình bình hành.
c. Tứ giác MCEB là hình vuông
Khi MB = MC ⇒ ∆BMC là tam giác vuông cân
\( \Rightarrow \widehat {MBC} = 45^\circ = \frac{{\widehat {ABC}}}{2} \Rightarrow \widehat {ABC} = 2\widehat {MBC} = 2.45^\circ = 90^\circ \)
⇒ ∆BAC là tam giác vuông cân
⇒ Tứ giác MCBE là hình vuông khi ∆BAC là tam giác vuông cân tại B.
Đã bán 189
Đã bán 187
Đã bán 1,5k
Đã bán 1,4k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác \(\widehat A\).
Câu 2:
Cho \(\cos x = \frac{2}{{\sqrt 5 }},0 < x < \frac{\pi }{2}\). Tính các giá trị lượng giác của góc x.
Câu 3:
Cho ∆ABC có \(\frac{5}{{\sin A}} = \frac{4}{{\sin B}} = \frac{3}{{\sin C}}\) và a = 10. Tính chu vi tam giác.
Câu 4:
Cho tana = 2. Tính giá trị của biểu thức \(C = \frac{{\sin a}}{{{{\sin }^3}a + 2{{\cos }^3}a}}\).
Câu 5:
Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?
Câu 6:
Cho ∆ABC. Gọi M, N, P lần lượt là trung điểm các cạnh AB, AC, BC. Hỏi \(\overrightarrow {MP} + \overrightarrow {NP} \) bằng vectơ nào?
Câu 7:
Cho hình bình hành ABCD. E, F lần lượt là trung điểm của AB và CD.
a. Tứ giác DEBF là hình gì? Vì sao?
b. Chứng minh 3 đường thẳng AC, BD, EF đồng quy.
c. Gọi giao điểm của AC với DE và BF theo thứ tự là M, N. Chứng minh tứ giác EMFN là hình bình hành.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận