Câu hỏi:
13/07/2024 275Gọi M là điểm bất kì trên đoạn thẳng AB. Vẽ về một phía của AB các hình vuông AMCD, BMEF.
a) Chứng minh rằng AE ⊥ BC.
b) Gọi H là giao điểm của AE và BC Chứng minh rằng ba điểm D,H, F thẳng hàng.
c) Chứng minh rằng đường thẳng DF luôn luôn đi qua một điểm cố định khi điểm M chuyển động trên đoạn thẳng AB cố định.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a. Xét ∆CAB, ta có CM ⊥ AB, BE ⊥ AC (Vì BE ⊥ MF, MF // AC) ⇒ AE ⊥ BC.
b. Gọi O là giao điểm của AC và DM.
Do \(\widehat {AHC} = 90^\circ \) (câu a) nên \(OH = \frac{{AC}}{2}\)
Do đó \(OH = \frac{{DM}}{2}\)
∆MHD có đường trung tuyến HO bằng nửa DM nên \(\widehat {MHD} = 90^\circ \left( 1 \right)\)
Chứng minh tương tự, \(\widehat {MHF} = 90^\circ \left( 2 \right)\)
Từ (1) và (2) suy ra D, H, F thẳng hàng.
c. Gọi I là giao điểm của DF và AC
\(\Delta DMF\) có DO = OM, OI // MF
Nên I là trung điểm của DF
Kẻ \(II' \bot AB\) thì I’ là trung điểm của AB
Và \(II' = \frac{{AD + BF}}{2} = \frac{{AM + MB}}{2} = \frac{{AB}}{2}\)
Do đó I là điểm cố định: I nằm trên đường trung trực của AB và cách AB 1 khoảng bằng \(\frac{{AB}}{2}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác \(\widehat A\).
Câu 2:
Cho \(\cos x = \frac{2}{{\sqrt 5 }},0 < x < \frac{\pi }{2}\). Tính các giá trị lượng giác của góc x.
Câu 3:
Cho ∆ABC có \(\frac{5}{{\sin A}} = \frac{4}{{\sin B}} = \frac{3}{{\sin C}}\) và a = 10. Tính chu vi tam giác.
Câu 4:
Cho tana = 2. Tính giá trị của biểu thức \(C = \frac{{\sin a}}{{{{\sin }^3}a + 2{{\cos }^3}a}}\).
Câu 5:
Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?
Câu 6:
Chứng minh rằng: \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\).
về câu hỏi!