Câu hỏi:

13/07/2024 5,552

Cho ∆ABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE.

a. Chứng minh rằng BE = CD.

b. Chứng minh rằng \(\widehat {ABE} = \widehat {ACD}\).

 c. Gọi K là giao điểm của BE và CD. ∆KBC là tam giác gì? Vì sao?

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao  (ảnh 1)

a. Ta có AB = AD + DB, AC = AE + EC mà AB = AC (vì ∆ABC cân tại A)

AD = AE (giả thiết) DB = EC

Xét ∆BEC và ∆CDB có: DB = EC (chứng minh trên)

\(\widehat {ABC} = \widehat {ACB}\) (Vì ∆ABC cân tại A)

BC là cạnh chung

\( \Rightarrow \Delta BEC = \Delta CDB\left( {c.g.c} \right) \Rightarrow BE = CD\) (2 cạnh tương ứng)

b. Vì \(\Delta BEC = \Delta CDB\) (chứng minh trên) \( \Rightarrow \widehat {EBC} = \widehat {DCB}\) (2 góc tương ứng)

Ta có: \(\widehat {ABC} = \widehat {ABE} + \widehat {EBC}\), \(\widehat {ACB} = \widehat {ACD} + \widehat {DCB}\)

\(\widehat {ABC} = \widehat {ACB}\) (Vì \(\Delta ABC\)cân tại A)

\(\widehat {EBC} = \widehat {DCB}\) (chứng minh trên)

\( \Rightarrow \widehat {ABE} = \widehat {ACD}\) (điều phải chứng minh)

c. Xét ∆KBC có: \(\widehat {EBC} = \widehat {DCB}\) (chứng minh trên)

∆KBC là tam giác cân tại K.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ∆ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác \(\widehat A\).

Xem đáp án » 13/07/2024 42,518

Câu 2:

Cho \(\cos x = \frac{2}{{\sqrt 5 }},0 < x < \frac{\pi }{2}\). Tính các giá trị lượng giác của góc x.

Xem đáp án » 13/07/2024 24,490

Câu 3:

Cho ∆ABC có \(\frac{5}{{\sin A}} = \frac{4}{{\sin B}} = \frac{3}{{\sin C}}\) và a = 10. Tính chu vi tam giác.

Xem đáp án » 13/07/2024 24,075

Câu 4:

Cho tana = 2. Tính giá trị của biểu thức \(C = \frac{{\sin a}}{{{{\sin }^3}a + 2{{\cos }^3}a}}\).

Xem đáp án » 13/07/2024 17,636

Câu 5:

Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?

Xem đáp án » 13/07/2024 13,619

Câu 6:

Cho ∆ABC. Gọi M, N, P lần lượt là trung điểm các cạnh AB, AC, BC. Hỏi \(\overrightarrow {MP} + \overrightarrow {NP} \) bằng vectơ nào?

Xem đáp án » 13/07/2024 11,792

Câu 7:

Cho hình bình hành ABCD. E, F lần lượt là trung điểm của AB và CD.

a. Tứ giác DEBF là hình gì? Vì sao?

b. Chứng minh 3 đường thẳng AC, BD, EF đồng quy.

c. Gọi giao điểm của AC với DE và BF theo thứ tự là M, N. Chứng minh tứ giác EMFN là hình bình hành.

Xem đáp án » 13/07/2024 11,621
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua