Câu hỏi:
13/07/2024 5,401
Một đoạn dây dẫn được uốn thành hình chữ nhật, có các cạnh a = 16 cm, b = 30 cm, trong đó có dòng điện cường độ I = 6A chạy qua. Xác định cảm ứng từ tại tâm hình chữ nhật ?
Một đoạn dây dẫn được uốn thành hình chữ nhật, có các cạnh a = 16 cm, b = 30 cm, trong đó có dòng điện cường độ I = 6A chạy qua. Xác định cảm ứng từ tại tâm hình chữ nhật ?
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
\(B = \frac{{{u_0}I}}{{4\pi R}}\) (cosĐ\(_1\)– cosĐ\(_2\))
\({B_1} = {B_3} = \frac{{u.I}}{{4\pi .\frac{{AB}}{2}}}.2\)cosĐ\(_1 = \frac{{{u_0}.I}}{\pi }.\frac{a}{{\sqrt {{a^2} + {b^2}} }}\)
\({B_2} = {B_4} = \frac{{{u_0}I}}{{4\pi R}}.2\)cosĐ\(_1 = \frac{{{u_0}I}}{{\pi a}}.\frac{b}{{\sqrt {{a^2} + {b^2}} }}\)
\( \Rightarrow B = {B_1} + {B_2} + {B_3} + {B_4}\)
\(B = 2\left( {\frac{{{u_0}I}}{{\pi b}}.\frac{a}{{\sqrt {{a^2} + {b^2}} }} + \frac{{{u_0}I.b}}{{\pi a\sqrt {{a^2} + {b^2}} }}} \right) = \frac{{2{u_0}I}}{{\pi \sqrt {{a^2} + {b^2}} }}\left( {\frac{a}{b} + \frac{b}{a}} \right)\)
\(B = \frac{{2{u_0}I}}{\pi }.\frac{{\sqrt {{a^2} + {b^2}} }}{{ab}} = 4\frac{{{u_0}}}{{2\pi }}I.\frac{{\sqrt {{a^2} + {b^2}} }}{{ab}}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Áp dụng định lí hàm số côsin cho ∆ABC ta có: \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.cos60^\circ = \sqrt 7 \)
Gọi AH là đường phân giác góc A.
Áp dụng tính chất đường phân giác cho ∆ABC: \(\frac{{AB}}{{AC}} = \frac{{BH}}{{HC}}\)
\(\frac{{AB}}{{BH}} = \frac{{AC}}{{HC}} = \frac{{AB + AC}}{{BH + HC}} = \frac{{2 + 3}}{{BC}} = \frac{5}{{\sqrt 7 }}\)
\( \Rightarrow BH = AB:\frac{5}{{\sqrt 7 }} = \frac{{2\sqrt 7 }}{5}\)
\(\cos \widehat B = \frac{{A{C^2} - A{B^2} - B{C^2}}}{{ - 2AB.BC}} = \frac{{\sqrt 7 }}{{14}}\)
Xét ∆ABH có: \(A{H^2} = A{B^2} + B{H^2} - 2.AB.BH.cos\widehat B = \frac{{108}}{{25}} \Rightarrow AH = \frac{{6\sqrt 3 }}{5}\).
Lời giải
Ta có: 0 < x < \(\frac{\pi }{2} \Rightarrow \left\{ {\begin{array}{*{20}{c}}{\sin x > 0}\\{\cos x > 0}\end{array}} \right.\)
+) \({\cos ^2}x + {\sin ^2}x = 1 \Leftrightarrow {\frac{2}{{\sqrt 5 }}^2} + {\sin ^2}x = 1\)
\( \Leftrightarrow {\sin ^2}x = \frac{1}{5} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\sin x = \frac{1}{{\sqrt 5 }}\left( {TM} \right)}\\{\sin x = - \frac{1}{{\sqrt 5 }}\left( L \right)}\end{array}} \right.\)
\( + )1 + {\cos ^2}x = \frac{1}{{{{\cos }^2}x}} \Leftrightarrow 1 + {\cos ^2}x = \frac{1}{{{{\left( {\frac{2}{{\sqrt 5 }}} \right)}^2}}}\)
\( \Leftrightarrow {\tan ^2}x = \frac{1}{4} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\tan x = \frac{1}{2}(TM)}\\{{\mathop{\rm t}\nolimits} = - \frac{1}{2}(L)}\end{array}} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.