Câu hỏi:
13/07/2024 841Tìm tất cả các giá trị của tham số m để phương trình \(\left( {m + 1} \right)\sin x + 2 - m = 0\) có nghiệm ?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
PT \( \Leftrightarrow \left( {m + 1} \right)\sin x = m - 2\left( * \right)\)
+) m = –1, (*) ⟺ 0.sinx = –3, PT vô nghiệm
+) m ≠ –1, (*) ⟺ \(\sin x = \frac{{m - 2}}{{m + 1}}\)
PT có nghiệm \( \Leftrightarrow - 1 \le \frac{{m - 2}}{{m + 1}} \le 1 \Leftrightarrow \frac{{m - 2}}{{m + 1}} + 1 \ge 0 \ge \left( {m - 2} \right)\left( {m + 1} \right) - 1\)
\( \Leftrightarrow \frac{{2m - 1}}{{m + 1}} \ge 0 \ge \frac{{ - 3}}{{m + 1}} \Leftrightarrow m + 1 > 0\) và 2m – 1 ≥ 0
\( \Leftrightarrow m > - 1\) và m ≥ \(\frac{1}{2} \Leftrightarrow m \ge \frac{1}{2}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác \(\widehat A\).
Câu 2:
Cho \(\cos x = \frac{2}{{\sqrt 5 }},0 < x < \frac{\pi }{2}\). Tính các giá trị lượng giác của góc x.
Câu 3:
Cho ∆ABC có \(\frac{5}{{\sin A}} = \frac{4}{{\sin B}} = \frac{3}{{\sin C}}\) và a = 10. Tính chu vi tam giác.
Câu 4:
Cho tana = 2. Tính giá trị của biểu thức \(C = \frac{{\sin a}}{{{{\sin }^3}a + 2{{\cos }^3}a}}\).
Câu 5:
Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?
Câu 6:
Chứng minh rằng: \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\).
về câu hỏi!