Câu hỏi:
13/07/2024 3,407Tìm m để hàm số \(y = \frac{{{x^2} - 2mx + 2}}{{x - m}}\) đạt cực tiểu tại x = 2.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\(y' = \frac{{{x^2} - 2mx + 2}}{{x - m}},y'' = \frac{{2\left( {2 - {m^2}} \right)x + 2{m^3} + 4m}}{{{{\left( {x - m} \right)}^4}}}\)
Để hàm số đạt cực tiểu tại x = 2 thì: \(y'\left( 2 \right) = \frac{{{2^2} - 2.2.m + 2{m^2} - 2}}{{{{\left( {2 - m} \right)}^2}}} = 0\)
\( \Leftrightarrow 2{m^2} - 4m + 2 = 0 \Leftrightarrow m = 1\)
Với m = 1 và x = 2 thay vào \(y''\) ta được:
\(y''\left( 2 \right) = \frac{{2\left( {2 - 1} \right).2 + {{2.1}^3} + 4.1}}{{{{\left( {2 - 1} \right)}^4}}} = \frac{{4 + 2 + 4}}{{{1^4}}} = 10 > 0\)
Với m = 1 thì hàm số đạt cực tiểu tại x = 0.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác \(\widehat A\).
Câu 2:
Cho \(\cos x = \frac{2}{{\sqrt 5 }},0 < x < \frac{\pi }{2}\). Tính các giá trị lượng giác của góc x.
Câu 3:
Cho ∆ABC có \(\frac{5}{{\sin A}} = \frac{4}{{\sin B}} = \frac{3}{{\sin C}}\) và a = 10. Tính chu vi tam giác.
Câu 4:
Cho tana = 2. Tính giá trị của biểu thức \(C = \frac{{\sin a}}{{{{\sin }^3}a + 2{{\cos }^3}a}}\).
Câu 5:
Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?
Câu 6:
Chứng minh rằng: \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\).
về câu hỏi!