Quảng cáo
Trả lời:
PT \( \Leftrightarrow \cos x + {\sin ^2}x\cos x + \sin x + {\cos ^2}x.\sin x = {\left( {\sin x + \cos x} \right)^2}\)
\( \Leftrightarrow \left( {\sin x + \cos x} \right) + {\sin ^2}x.\cos x + {\cos ^2}x.\sin x = {\left( {\sin x + \cos x} \right)^2}\)
\( \Leftrightarrow \sin x + \cos x + \sin x\cos x\left( {\sin x + \cos x} \right) = {\left( {\sin x + \cos x} \right)^2}\)
Đặt t = sinx + cosx = \(\sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right),t \in \left[ { - \sqrt 2 ;\sqrt 2 } \right]\)
\( \Rightarrow {t^2} = 1 + 2\sin x\cos x \Rightarrow \sin x\cos x = \frac{{{t^2}}}{2} - \frac{1}{2}\)
⇒ Ta có: \(t + \left( {\frac{{{t^2}}}{2} - \frac{1}{2}} \right).t = {t^2}\)
\( \Leftrightarrow \frac{1}{2}{t^3} - {t^2} + \frac{1}{2}t = 0 \Leftrightarrow t = 0\) hoặc t = 1
\(t = 0 \Leftrightarrow \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right) = 0 \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = 0\)
\( \Leftrightarrow x + \frac{\pi }{4} = k\pi \Leftrightarrow x = - \frac{\pi }{4} + k\pi ,k \in \mathbb{Z}\)
\(t = 1 \Leftrightarrow \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right) = 1 \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\)
\( \Leftrightarrow x + \frac{\pi }{4} = \frac{\pi }{4} + k2\pi \) hoặc \(x + \frac{\pi }{4} = \pi - \frac{\pi }{4} + k2\pi ,k \in \mathbb{Z}\)
\( \Leftrightarrow x = k2\pi \) hoặc \(x = \frac{\pi }{2} + k2\pi ,k \in Z\)
Vậy S = \[\left\{ {k2\pi ;\frac{\pi }{2} + k2\pi ; - \frac{\pi }{4} + k\pi ,k \in \mathbb{Z}} \right\}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Áp dụng định lí hàm số côsin cho ∆ABC ta có: \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.cos60^\circ = \sqrt 7 \)
Gọi AH là đường phân giác góc A.
Áp dụng tính chất đường phân giác cho ∆ABC: \(\frac{{AB}}{{AC}} = \frac{{BH}}{{HC}}\)
\(\frac{{AB}}{{BH}} = \frac{{AC}}{{HC}} = \frac{{AB + AC}}{{BH + HC}} = \frac{{2 + 3}}{{BC}} = \frac{5}{{\sqrt 7 }}\)
\( \Rightarrow BH = AB:\frac{5}{{\sqrt 7 }} = \frac{{2\sqrt 7 }}{5}\)
\(\cos \widehat B = \frac{{A{C^2} - A{B^2} - B{C^2}}}{{ - 2AB.BC}} = \frac{{\sqrt 7 }}{{14}}\)
Xét ∆ABH có: \(A{H^2} = A{B^2} + B{H^2} - 2.AB.BH.cos\widehat B = \frac{{108}}{{25}} \Rightarrow AH = \frac{{6\sqrt 3 }}{5}\).
Lời giải
\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}}\)
\(\frac{{\sin A}}{{\sin B}} = \frac{a}{b} = \frac{5}{4}\), b = 8
\(\frac{a}{{\sin A}} = \frac{c}{{\sin C}}\)
\(\frac{{\sin A}}{{\sin C}} = \frac{a}{c} = \frac{5}{3}\), c = 6
Chu vi là: 8 + 6 + 10 = 24.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.