Câu hỏi:
13/07/2024 5,950Cho ∆ABC nhọn, đường cao AK.
a. Giải ∆ACK biết \(\widehat C = 30^\circ \), AK = 3 cm.
b. Chứng minh \(AK = \frac{{BC}}{{\cot B + \cot C}}\).
c. Biết BC = 5 cm, \(\widehat B = 68^\circ ,\widehat C = 30^\circ \). Tính diện tích ∆ABC.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a. Xét ∆ACK vuông tại K, có: \(\sin C = \frac{{AK}}{{AC}} \Leftrightarrow \sin 30^\circ = \frac{3}{{AC}} \Leftrightarrow AC = 6\left( {cm} \right)\)
\(KC = \sqrt {A{C^2} - A{K^2}} = \sqrt {{6^2} - {3^2}} = 3\sqrt 3 \left( {cm} \right)\).
b. Ta có: \(\cot B = \frac{{BK}}{{AK}};\cot C = \frac{{CK}}{{AK}} \Rightarrow \cot B + \cot C = \frac{{BK + CK}}{{AK}}\)
\( \Leftrightarrow \cot B + \cot C = \frac{{BC}}{{AK}} \Leftrightarrow AK = \frac{{BC}}{{\cot B + \cot C}}\) (đpcm).
c. Ta có: \(AK = \frac{{BC}}{{\cot B + \cot C}} \Leftrightarrow AK = \frac{5}{{\cot 68^\circ + \cot 30^\circ }}\)\( \Leftrightarrow AK \approx 2,34\)
\({S_{ABC}} = \frac{1}{2}.AK.BC = \frac{1}{2}.2,34.5 = 5,68\left( {c{m^2}} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác \(\widehat A\).
Câu 2:
Cho \(\cos x = \frac{2}{{\sqrt 5 }},0 < x < \frac{\pi }{2}\). Tính các giá trị lượng giác của góc x.
Câu 3:
Cho ∆ABC có \(\frac{5}{{\sin A}} = \frac{4}{{\sin B}} = \frac{3}{{\sin C}}\) và a = 10. Tính chu vi tam giác.
Câu 4:
Cho tana = 2. Tính giá trị của biểu thức \(C = \frac{{\sin a}}{{{{\sin }^3}a + 2{{\cos }^3}a}}\).
Câu 5:
Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?
Câu 6:
Chứng minh rằng: \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\).
về câu hỏi!