Câu hỏi:
13/07/2024 1,658Cho ∆ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm A, bán kính AH, kẻ các tiếp tuyến BD, CE với đường tròn tâm A (D, E là các tiếp điểm khác H). Chứng minh rằng:
a. 3 điểm D, A, E thẳng hàng.
b. DE tiếp xúc với đường tròn có đường kính BC.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a. Theo tính chất 2 tiếp tuyến cắt nhau \(\left\{ {\begin{array}{*{20}{c}}{\widehat {DAB} = \widehat {BAH}}\\{\widehat {HAC} = \widehat {CAE}}\end{array}} \right.\)
\( \Rightarrow \widehat {DAB} + \widehat {CAE} = \widehat {HAO} + \widehat {HAC} = \widehat {BAC} = 90^\circ \Rightarrow \widehat {DAE} = 180^\circ \)
⇒ D, A, E thẳng hàng
b. Gọi O là trung diểm BC.
⇒ O là tâm đường tròn ngoại tiếp ∆ABC vuông tại A, đường kính BC
DA = AE ⇒ OA là đường trung bình hình thang BDEC
⇒ OA // BD ⇒ OA ⊥ DE
DE ⊥ OA ⇒ DE tiếp xúc (O), đường kính BC.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác \(\widehat A\).
Câu 2:
Cho \(\cos x = \frac{2}{{\sqrt 5 }},0 < x < \frac{\pi }{2}\). Tính các giá trị lượng giác của góc x.
Câu 3:
Cho ∆ABC có \(\frac{5}{{\sin A}} = \frac{4}{{\sin B}} = \frac{3}{{\sin C}}\) và a = 10. Tính chu vi tam giác.
Câu 4:
Cho tana = 2. Tính giá trị của biểu thức \(C = \frac{{\sin a}}{{{{\sin }^3}a + 2{{\cos }^3}a}}\).
Câu 5:
Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?
Câu 6:
Chứng minh rằng: \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\).
về câu hỏi!