Câu hỏi:
13/07/2024 560Số nghiệm của phương trình sin2x – cos2x = 3sinx + cosx – 2 thuộc \(\left( {0;\frac{\pi }{2}} \right)\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Với \(x \in \left( {0;\frac{\pi }{2}} \right).\) Xét PT: sin2x – cos2x = 3sinx + cosx – 2
⟺ (sin2x – cosx) + (1 – cos2x) – 3sinx + 1 = 0
⟺ cosx(2sinx – 1) + \(2{\sin ^2}x - 3\sin x + 1 = 0\)
⟺ (cosx + sinx –1)(2sinx – 1) = 0
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\sin x = \frac{1}{2}}\\{\sin \left( {x + \frac{\pi }{4}} \right) = \frac{1}{{\sqrt 2 }}}\end{array}} \right. \Rightarrow x = \frac{\pi }{3}\) do \(x \in \left( {0;\frac{\pi }{2}} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác \(\widehat A\).
Câu 2:
Cho \(\cos x = \frac{2}{{\sqrt 5 }},0 < x < \frac{\pi }{2}\). Tính các giá trị lượng giác của góc x.
Câu 3:
Cho ∆ABC có \(\frac{5}{{\sin A}} = \frac{4}{{\sin B}} = \frac{3}{{\sin C}}\) và a = 10. Tính chu vi tam giác.
Câu 4:
Cho tana = 2. Tính giá trị của biểu thức \(C = \frac{{\sin a}}{{{{\sin }^3}a + 2{{\cos }^3}a}}\).
Câu 5:
Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?
Câu 6:
Chứng minh rằng: \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\).
về câu hỏi!