Câu hỏi:
11/07/2024 87Cho \(\left( {x + \sqrt {{x^2} + 1} } \right)\left( {y + \sqrt {{y^2} + 1} } \right) = 1\). Tính x + y ?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có: \(\left( {\sqrt {{x^2} + 1} - 1} \right)\left( {x + \sqrt {{x^2} + 1} } \right)\left( {y + \sqrt {{y^2} + 1} } \right) = \sqrt {{x^2} + 1} - x\)
\( \Leftrightarrow \left( {{x^2} + 1 - x} \right)\left( {y + \sqrt {{y^2} + 1} } \right) = \sqrt {{x^2} + 1} - x \Leftrightarrow y + \sqrt {{y^2} + 1} = \sqrt {{x^2} + 1} - x\left( 1 \right)\)
Tương tự, nhân cả 2 vế với \(\sqrt {{y^2} + 1} - y\), ta có: \(x + \sqrt {{x^2} + 1} = \sqrt {{y^2} + 1} - y\left( 2 \right)\)
Trừ (1) cho (2), ta có: 2y = –2x
⇒ y = –x ⇒ x + y = 0.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác \(\widehat A\).
Câu 2:
Cho \(\cos x = \frac{2}{{\sqrt 5 }},0 < x < \frac{\pi }{2}\). Tính các giá trị lượng giác của góc x.
Câu 3:
Cho ∆ABC có \(\frac{5}{{\sin A}} = \frac{4}{{\sin B}} = \frac{3}{{\sin C}}\) và a = 10. Tính chu vi tam giác.
Câu 4:
Cho tana = 2. Tính giá trị của biểu thức \(C = \frac{{\sin a}}{{{{\sin }^3}a + 2{{\cos }^3}a}}\).
Câu 5:
Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?
Câu 6:
Chứng minh rằng: \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\).
về câu hỏi!