Câu hỏi:
13/07/2024 2,101Tìm tất cả các giá trị x ∈ ℕ thỏa mãn \(6\left( {{P_x} - {P_{x - 1}}} \right) = {P_{x + 1}}\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\(6\left( {{P_x} - {P_{x - 1}}} \right) = {P_{x + 1}}\)
\(\begin{array}{l} \Leftrightarrow 6\left( {x! - \left( {x - 1} \right)!} \right) = \left( {x + 1} \right)!\\ \Leftrightarrow \frac{{6\left[ {x! - \left( {x - 1} \right)!} \right]}}{{\left( {x - 1} \right)!}} = \frac{{\left( {x + 1} \right)!}}{{\left( {x - 1} \right)!}}\end{array}\)
\(\begin{array}{l} \Leftrightarrow 6\left( {x - 1} \right) = \left( {x + 1} \right).x\\ \Leftrightarrow {x^2} - 5x + 6 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 2}\\{x = 3}\end{array}} \right.\end{array}\)
Vậy x = 2, x = 3.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác \(\widehat A\).
Câu 2:
Cho \(\cos x = \frac{2}{{\sqrt 5 }},0 < x < \frac{\pi }{2}\). Tính các giá trị lượng giác của góc x.
Câu 3:
Cho ∆ABC có \(\frac{5}{{\sin A}} = \frac{4}{{\sin B}} = \frac{3}{{\sin C}}\) và a = 10. Tính chu vi tam giác.
Câu 4:
Cho tana = 2. Tính giá trị của biểu thức \(C = \frac{{\sin a}}{{{{\sin }^3}a + 2{{\cos }^3}a}}\).
Câu 5:
Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?
Câu 6:
Chứng minh rằng: \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\).
về câu hỏi!