Câu hỏi:

27/04/2023 497 Lưu

Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?

A. \(\overrightarrow {AC} - \overrightarrow {AD} = \overrightarrow {CD} \).

B. \(\overrightarrow {AC} - \overrightarrow {BD} = 2\overrightarrow {CD} \).

C. \(\overrightarrow {AC} + \overrightarrow {BC} = \overrightarrow {AB} \).

D. \(\overrightarrow {AC} + \overrightarrow {BD} = 2\overrightarrow {BC} \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng A. vecto AC - vecto AD (ảnh 1)

A. Sai do \(\overrightarrow {AC} - \overrightarrow {AD} = \overrightarrow {DC} \)

B. Sai do \(\overrightarrow {AC} - \overrightarrow {BD} = 2\overrightarrow {CD} \Leftrightarrow \left( {\overrightarrow {AB} + \overrightarrow {AD} } \right) - \left( {\overrightarrow {AD} - \overrightarrow {AB} } \right) = 2\overrightarrow {CD} \Leftrightarrow 2\overrightarrow {AB} = 2\overrightarrow {CD} \) (Vô lí)

C. Sai do \(\overrightarrow {AC} + \overrightarrow {BC} = \overrightarrow {AB} \Leftrightarrow \overrightarrow {AC} - \overrightarrow {AB} = - \overrightarrow {BC} \Leftrightarrow \overrightarrow {BC} = \overrightarrow {CB} \) (Vô lí)

D. Đúng do \(\overrightarrow {AC} + \overrightarrow {BD} = \overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {BC} + \overrightarrow {CD} = 2\overrightarrow {BC} + \left( {\overrightarrow {AB} + \overrightarrow {CD} } \right) = 2\overrightarrow {BC} + \overrightarrow 0 = 2\overrightarrow {BC} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có AB = 2, AC = 3, góc A = 60 độ. Tính độ dài phân giác góc A (ảnh 1)

Áp dụng định lí hàm số côsin cho ∆ABC ta có: \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.cos60^\circ  = \sqrt 7 \)

Gọi AH là đường phân giác góc A.

Áp dụng tính chất đường phân giác cho ∆ABC: \(\frac{{AB}}{{AC}} = \frac{{BH}}{{HC}}\)

\(\frac{{AB}}{{BH}} = \frac{{AC}}{{HC}} = \frac{{AB + AC}}{{BH + HC}} = \frac{{2 + 3}}{{BC}} = \frac{5}{{\sqrt 7 }}\)

\( \Rightarrow BH = AB:\frac{5}{{\sqrt 7 }} = \frac{{2\sqrt 7 }}{5}\)

\(\cos \widehat B = \frac{{A{C^2} - A{B^2} - B{C^2}}}{{ - 2AB.BC}} = \frac{{\sqrt 7 }}{{14}}\)

Xét ∆ABH có: \(A{H^2} = A{B^2} + B{H^2} - 2.AB.BH.cos\widehat B = \frac{{108}}{{25}} \Rightarrow AH = \frac{{6\sqrt 3 }}{5}\).

Lời giải

\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}}\)

\(\frac{{\sin A}}{{\sin B}} = \frac{a}{b} = \frac{5}{4}\), b = 8

\(\frac{a}{{\sin A}} = \frac{c}{{\sin C}}\)

\(\frac{{\sin A}}{{\sin C}} = \frac{a}{c} = \frac{5}{3}\), c = 6

Chu vi là: 8 + 6 + 10 = 24.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP