Câu hỏi:
13/07/2024 424Cho hình thang vuông ABCD có \(\widehat B = \widehat C = 90^\circ \) và \(AB = BC = \frac{1}{2}CD = 2cm\). Tính độ dài đường chéo và cạnh bên của hình thang.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
CD = 2.2 = 4 (cm)
∆BCD vuông tại C \( \Rightarrow BD = \sqrt {B{C^2} + C{D^2}} \approx 4,5\left( {cm} \right)\)
∆CBA vuông tại B \( \Rightarrow CA = \sqrt {B{A^2} + B{C^2}} \approx 2,8\left( {cm} \right)\)
Kẻ AH ⊥ CD
Xét tứ giác BAHC có \(\widehat {HCB} = \widehat {CBA} = \widehat {AHC} = 90^\circ \)
Tứ giác BAHC là hình chữ nhật ⇒ BA = CH và BC = AH
⇒ CH = 2 cm ⇒ HD = 4 – 2 = 2 (cm)
BC = AH ⇒ AH = 2 cm
∆AHD vuông tại H \( \Rightarrow AD = \sqrt {A{H^2} + H{D^2}} \Rightarrow AD \approx 2,8\left( {cm} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác \(\widehat A\).
Câu 2:
Cho \(\cos x = \frac{2}{{\sqrt 5 }},0 < x < \frac{\pi }{2}\). Tính các giá trị lượng giác của góc x.
Câu 3:
Cho ∆ABC có \(\frac{5}{{\sin A}} = \frac{4}{{\sin B}} = \frac{3}{{\sin C}}\) và a = 10. Tính chu vi tam giác.
Câu 4:
Cho tana = 2. Tính giá trị của biểu thức \(C = \frac{{\sin a}}{{{{\sin }^3}a + 2{{\cos }^3}a}}\).
Câu 5:
Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?
Câu 6:
Chứng minh rằng: \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\).
về câu hỏi!