Cho hình thang vuông ABCD có \(\widehat B = \widehat C = 90^\circ \) và \(AB = BC = \frac{1}{2}CD = 2cm\). Tính độ dài đường chéo và cạnh bên của hình thang.
Cho hình thang vuông ABCD có \(\widehat B = \widehat C = 90^\circ \) và \(AB = BC = \frac{1}{2}CD = 2cm\). Tính độ dài đường chéo và cạnh bên của hình thang.
Quảng cáo
Trả lời:

CD = 2.2 = 4 (cm)
∆BCD vuông tại C \( \Rightarrow BD = \sqrt {B{C^2} + C{D^2}} \approx 4,5\left( {cm} \right)\)
∆CBA vuông tại B \( \Rightarrow CA = \sqrt {B{A^2} + B{C^2}} \approx 2,8\left( {cm} \right)\)
Kẻ AH ⊥ CD
Xét tứ giác BAHC có \(\widehat {HCB} = \widehat {CBA} = \widehat {AHC} = 90^\circ \)
Tứ giác BAHC là hình chữ nhật ⇒ BA = CH và BC = AH
⇒ CH = 2 cm ⇒ HD = 4 – 2 = 2 (cm)
BC = AH ⇒ AH = 2 cm
∆AHD vuông tại H \( \Rightarrow AD = \sqrt {A{H^2} + H{D^2}} \Rightarrow AD \approx 2,8\left( {cm} \right)\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Áp dụng định lí hàm số côsin cho ∆ABC ta có: \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.cos60^\circ = \sqrt 7 \)
Gọi AH là đường phân giác góc A.
Áp dụng tính chất đường phân giác cho ∆ABC: \(\frac{{AB}}{{AC}} = \frac{{BH}}{{HC}}\)
\(\frac{{AB}}{{BH}} = \frac{{AC}}{{HC}} = \frac{{AB + AC}}{{BH + HC}} = \frac{{2 + 3}}{{BC}} = \frac{5}{{\sqrt 7 }}\)
\( \Rightarrow BH = AB:\frac{5}{{\sqrt 7 }} = \frac{{2\sqrt 7 }}{5}\)
\(\cos \widehat B = \frac{{A{C^2} - A{B^2} - B{C^2}}}{{ - 2AB.BC}} = \frac{{\sqrt 7 }}{{14}}\)
Xét ∆ABH có: \(A{H^2} = A{B^2} + B{H^2} - 2.AB.BH.cos\widehat B = \frac{{108}}{{25}} \Rightarrow AH = \frac{{6\sqrt 3 }}{5}\).
Lời giải
Ta có: 0 < x < \(\frac{\pi }{2} \Rightarrow \left\{ {\begin{array}{*{20}{c}}{\sin x > 0}\\{\cos x > 0}\end{array}} \right.\)
+) \({\cos ^2}x + {\sin ^2}x = 1 \Leftrightarrow {\frac{2}{{\sqrt 5 }}^2} + {\sin ^2}x = 1\)
\( \Leftrightarrow {\sin ^2}x = \frac{1}{5} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\sin x = \frac{1}{{\sqrt 5 }}\left( {TM} \right)}\\{\sin x = - \frac{1}{{\sqrt 5 }}\left( L \right)}\end{array}} \right.\)
\( + )1 + {\cos ^2}x = \frac{1}{{{{\cos }^2}x}} \Leftrightarrow 1 + {\cos ^2}x = \frac{1}{{{{\left( {\frac{2}{{\sqrt 5 }}} \right)}^2}}}\)
\( \Leftrightarrow {\tan ^2}x = \frac{1}{4} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\tan x = \frac{1}{2}(TM)}\\{{\mathop{\rm t}\nolimits} = - \frac{1}{2}(L)}\end{array}} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.