Câu hỏi:
13/07/2024 722Cho ∆ABC vuông tại A có AB = 12cm, AC = 16cm, vẽ đường cao AH.
a, Chứng minh: ∆HBA ∆ABC.
b, Tính BC.AH.
c, Trong ∆ABC, kẻ phân giác AD (D ∈ BC). Trong ∆ADB kẻ phân giác DE (E ∈ AB). Trong ∆ADC kẻ phân giác DF (F ∈ AC). Chứng minh: \(\frac{{EA}}{{EB}}.\frac{{DB}}{{DC}}.\frac{{FC}}{{FA}} = 1\) .
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a. Xét ∆HBA và ∆ABC:
\(\widehat B\) chung;
b. Áp dụng định lý Pytago vào ∆ABC vuông tại A
\( \Rightarrow BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{{12}^2} + {{16}^2}} = \sqrt {400} = 20\left( {cm} \right)\)
∆HBA ∆ABC \( \Rightarrow \frac{{AB}}{{AH}} = \frac{{BC}}{{BA}} \Rightarrow \frac{{12}}{{AH}} = \frac{{20}}{{12}} \Rightarrow AH = \frac{{36}}{5}\left( {cm} \right)\)
c. DE là đường phân giác \(\widehat {ADB} \Rightarrow \frac{{EA}}{{EB}} = \frac{{DA}}{{DB}}\left( 1 \right)\)
DF là đường phân giác \(\widehat {ADC} \Rightarrow \frac{{FC}}{{FA}} = \frac{{DC}}{{DA}}\left( 2 \right)\)
AD là đường phân giác \(\widehat {ABC} \Rightarrow \frac{{DC}}{{DB}} = \frac{{AC}}{{AB}}\left( 3 \right)\)
(1), (2), (3) \( \Rightarrow \frac{{EA}}{{EB}}.\frac{{FC}}{{FA}}.\frac{{DC}}{{DB}} = \frac{{DA}}{{DB}}.\frac{{DC}}{{DA}}.\frac{{AC}}{{AB}} \Rightarrow \frac{{EA}}{{EB}}.\frac{{FC}}{{FA}}.\frac{{DC}}{{DB}} = \frac{{DB}}{{DC}}.\frac{{AC}}{{AB}} = \frac{{AB}}{{AC}}.\frac{{AC}}{{AB}} = 1\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác \(\widehat A\).
Câu 2:
Cho \(\cos x = \frac{2}{{\sqrt 5 }},0 < x < \frac{\pi }{2}\). Tính các giá trị lượng giác của góc x.
Câu 3:
Cho ∆ABC có \(\frac{5}{{\sin A}} = \frac{4}{{\sin B}} = \frac{3}{{\sin C}}\) và a = 10. Tính chu vi tam giác.
Câu 4:
Cho tana = 2. Tính giá trị của biểu thức \(C = \frac{{\sin a}}{{{{\sin }^3}a + 2{{\cos }^3}a}}\).
Câu 5:
Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?
Câu 6:
Chứng minh rằng: \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\).
về câu hỏi!