Câu hỏi:

13/07/2024 4,322

Cho ∆ABC vuông tại A có AB = 12cm, AC = 16cm, vẽ đường cao AH.

a, Chứng minh: ∆HBA ∆ABC.

b, Tính BC.AH.

c, Trong ∆ABC, kẻ phân giác AD (D BC). Trong ∆ADB kẻ phân giác DE (E AB). Trong ∆ADC kẻ phân giác DF (F AC). Chứng minh: \(\frac{{EA}}{{EB}}.\frac{{DB}}{{DC}}.\frac{{FC}}{{FA}} = 1\) .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho ∆ABC vuông tại A có AB = 12cm, AC = 16cm, vẽ đường cao AH (ảnh 1)

a. Xét ∆HBA và ∆ABC:

\(\widehat B\) chung;

b. Áp dụng định lý Pytago vào ∆ABC vuông tại A

\( \Rightarrow BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{{12}^2} + {{16}^2}} = \sqrt {400} = 20\left( {cm} \right)\)

∆HBA ∆ABC \( \Rightarrow \frac{{AB}}{{AH}} = \frac{{BC}}{{BA}} \Rightarrow \frac{{12}}{{AH}} = \frac{{20}}{{12}} \Rightarrow AH = \frac{{36}}{5}\left( {cm} \right)\)

c. DE là đường phân giác \(\widehat {ADB} \Rightarrow \frac{{EA}}{{EB}} = \frac{{DA}}{{DB}}\left( 1 \right)\)

DF là đường phân giác \(\widehat {ADC} \Rightarrow \frac{{FC}}{{FA}} = \frac{{DC}}{{DA}}\left( 2 \right)\)

AD là đường phân giác \(\widehat {ABC} \Rightarrow \frac{{DC}}{{DB}} = \frac{{AC}}{{AB}}\left( 3 \right)\)

(1), (2), (3) \( \Rightarrow \frac{{EA}}{{EB}}.\frac{{FC}}{{FA}}.\frac{{DC}}{{DB}} = \frac{{DA}}{{DB}}.\frac{{DC}}{{DA}}.\frac{{AC}}{{AB}} \Rightarrow \frac{{EA}}{{EB}}.\frac{{FC}}{{FA}}.\frac{{DC}}{{DB}} = \frac{{DB}}{{DC}}.\frac{{AC}}{{AB}} = \frac{{AB}}{{AC}}.\frac{{AC}}{{AB}} = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có AB = 2, AC = 3, góc A = 60 độ. Tính độ dài phân giác góc A (ảnh 1)

Áp dụng định lí hàm số côsin cho ∆ABC ta có: \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.cos60^\circ  = \sqrt 7 \)

Gọi AH là đường phân giác góc A.

Áp dụng tính chất đường phân giác cho ∆ABC: \(\frac{{AB}}{{AC}} = \frac{{BH}}{{HC}}\)

\(\frac{{AB}}{{BH}} = \frac{{AC}}{{HC}} = \frac{{AB + AC}}{{BH + HC}} = \frac{{2 + 3}}{{BC}} = \frac{5}{{\sqrt 7 }}\)

\( \Rightarrow BH = AB:\frac{5}{{\sqrt 7 }} = \frac{{2\sqrt 7 }}{5}\)

\(\cos \widehat B = \frac{{A{C^2} - A{B^2} - B{C^2}}}{{ - 2AB.BC}} = \frac{{\sqrt 7 }}{{14}}\)

Xét ∆ABH có: \(A{H^2} = A{B^2} + B{H^2} - 2.AB.BH.cos\widehat B = \frac{{108}}{{25}} \Rightarrow AH = \frac{{6\sqrt 3 }}{5}\).

Lời giải

Ta có: 0 < x < \(\frac{\pi }{2} \Rightarrow \left\{ {\begin{array}{*{20}{c}}{\sin x > 0}\\{\cos x > 0}\end{array}} \right.\)

+) \({\cos ^2}x + {\sin ^2}x = 1 \Leftrightarrow {\frac{2}{{\sqrt 5 }}^2} + {\sin ^2}x = 1\)

\( \Leftrightarrow {\sin ^2}x = \frac{1}{5} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\sin x = \frac{1}{{\sqrt 5 }}\left( {TM} \right)}\\{\sin x = - \frac{1}{{\sqrt 5 }}\left( L \right)}\end{array}} \right.\)

\( + )1 + {\cos ^2}x = \frac{1}{{{{\cos }^2}x}} \Leftrightarrow 1 + {\cos ^2}x = \frac{1}{{{{\left( {\frac{2}{{\sqrt 5 }}} \right)}^2}}}\)

\( \Leftrightarrow {\tan ^2}x = \frac{1}{4} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\tan x = \frac{1}{2}(TM)}\\{{\mathop{\rm t}\nolimits} = - \frac{1}{2}(L)}\end{array}} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP