Câu hỏi:
13/07/2024 491Cho ∆ABC vuông tại A có đường cao AH. Kẻ HE, HF vuông góc với AB, AC. Chứng minh rằng: \(\frac{{EB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
HF // AB \( \Rightarrow \frac{{HF}}{{AB}} = \frac{{CF}}{{CA}} \Rightarrow \frac{{HF}}{{CF}} = \frac{{AB}}{{AC}} \Rightarrow \frac{{HF}}{{CF}}.\frac{{A{B^2}}}{{A{C^2}}} = \frac{{A{B^3}}}{{A{C^3}}} \Rightarrow \frac{{HF}}{{CF}}.\frac{{BH.BC}}{{CH.BC}} = \frac{{A{B^3}}}{{A{C^3}}}\)(1)
Ta có: HF // AB \( \Rightarrow \widehat {CHF} = \widehat {CBA}\)
Xét ∆BEH và ∆HFC: Ta có: \(\left\{ {\begin{array}{*{20}{c}}{\widehat {BEH} = \widehat {HFC} = 90^\circ }\\{\widehat {CHF} = \widehat {CBA}}\end{array}} \right.\)
\( \Rightarrow \Delta BEH \sim \Delta HFC(g.g) \Rightarrow \frac{{BE}}{{BH}} = \frac{{HF}}{{HC}} \Rightarrow BE.HC = HF.BH \Rightarrow BE = \frac{{HF.BH}}{{HC}}\) (2)
Từ (1) và (2) \( \Rightarrow \frac{{BE}}{{CF}} = \frac{{A{B^3}}}{{A{C^3}}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác \(\widehat A\).
Câu 2:
Cho \(\cos x = \frac{2}{{\sqrt 5 }},0 < x < \frac{\pi }{2}\). Tính các giá trị lượng giác của góc x.
Câu 3:
Cho ∆ABC có \(\frac{5}{{\sin A}} = \frac{4}{{\sin B}} = \frac{3}{{\sin C}}\) và a = 10. Tính chu vi tam giác.
Câu 4:
Cho tana = 2. Tính giá trị của biểu thức \(C = \frac{{\sin a}}{{{{\sin }^3}a + 2{{\cos }^3}a}}\).
Câu 5:
Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?
Câu 6:
Chứng minh rằng: \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\).
về câu hỏi!