Câu hỏi:
27/04/2023 291Cho ∆ABC nhọn, 2 đường trung tuyến BM và CN cắt nhau tại I. Gọi E và F là trung điểm của IB và IC.
a. Chứng minh tứ giác MNEF là hình bình hành.
b. BC cắt NE và MF tại H và K. Chứng minh \(CM.HK = \frac{{BC}}{2}\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a. Xét ∆ABC ta có: AN = NB; AM = MC (gt)
Nên MN là đường trung bình của ∆ABC ⇒ MN // BC (1), MN = \(\frac{1}{2}BC\)(2)
Xét ∆BCI, ta có: BE = EI (gt), CI = IF (gt)
Nên EF là đường trung bình của ∆BIC ⇒ EF // BC (3), EF = \(\frac{1}{2}BC\)(4)
Từ (1) và (3) ⇒ MN // EF (5)
Từ (2) và (4) ⇒ MN = EF (6)
Từ (5) và (6) ⇒ MNEF là hình bình hành (Dấu hiệu nhận biết 3)
b. Xét tứ giác EFHK, ta có:
EF // HK (Vì H, K ∈ BC, mà BC // EF)
EH // FK (Vì H ∈ NE, K ∈ MF, mà NE // MF)
Do đó, tứ giác EFKH là hình bình hành (Dấu hiệu nhận biết 1) ⇒ EF = HK (7)
Mà EF = \(\frac{1}{2}BC\) (theo (4)) (8)
Từ (7) và (8) ⇒ HK = \(\frac{1}{2}BC\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác \(\widehat A\).
Câu 2:
Cho \(\cos x = \frac{2}{{\sqrt 5 }},0 < x < \frac{\pi }{2}\). Tính các giá trị lượng giác của góc x.
Câu 3:
Cho ∆ABC có \(\frac{5}{{\sin A}} = \frac{4}{{\sin B}} = \frac{3}{{\sin C}}\) và a = 10. Tính chu vi tam giác.
Câu 4:
Cho tana = 2. Tính giá trị của biểu thức \(C = \frac{{\sin a}}{{{{\sin }^3}a + 2{{\cos }^3}a}}\).
Câu 5:
Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?
Câu 6:
Chứng minh rằng: \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\).
về câu hỏi!