Cho ∆ABC vuông tại A (AB < AC), đường cao AH. Trên cạnh BC lấy điểm M sao cho BA = BM.
a) Chứng minh AM là tia phân giác của \(\widehat {HAC}\).
b) Gọi K là hình chiếu vuông góc của M trên AC. Chứng minh AM là trung trực của HK.
c) Gọi I là hình chiếu vuông góc của C trên tia AM. Chứng minh AH, KM, CI đồng quy.
d) Chứng minh AB + AC < AH + BC.
Cho ∆ABC vuông tại A (AB < AC), đường cao AH. Trên cạnh BC lấy điểm M sao cho BA = BM.
a) Chứng minh AM là tia phân giác của \(\widehat {HAC}\).
b) Gọi K là hình chiếu vuông góc của M trên AC. Chứng minh AM là trung trực của HK.
c) Gọi I là hình chiếu vuông góc của C trên tia AM. Chứng minh AH, KM, CI đồng quy.
d) Chứng minh AB + AC < AH + BC.
Quảng cáo
Trả lời:

a. Chú ý \(\widehat {BAM} = \widehat {BMA}\)
Từ đó \(\widehat {CAM} = \widehat {HAM}\) nên AM là tia phân giác của \(\widehat {HAC}\)
b. Dùng kết quả ý a chứng minh được AH = AK, MH = MK. Do đó AM là trung trực của HK.
c. Chú ý AH, KM, CI là 3 đường cao của ∆MAC.
d. Chú ý AH = AK, AB = BM, từ đó ta có: AC – AH = CK < CM = BC – BA
⇒ AB + AC < AH + BC.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Áp dụng định lí hàm số côsin cho ∆ABC ta có: \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.cos60^\circ = \sqrt 7 \)
Gọi AH là đường phân giác góc A.
Áp dụng tính chất đường phân giác cho ∆ABC: \(\frac{{AB}}{{AC}} = \frac{{BH}}{{HC}}\)
\(\frac{{AB}}{{BH}} = \frac{{AC}}{{HC}} = \frac{{AB + AC}}{{BH + HC}} = \frac{{2 + 3}}{{BC}} = \frac{5}{{\sqrt 7 }}\)
\( \Rightarrow BH = AB:\frac{5}{{\sqrt 7 }} = \frac{{2\sqrt 7 }}{5}\)
\(\cos \widehat B = \frac{{A{C^2} - A{B^2} - B{C^2}}}{{ - 2AB.BC}} = \frac{{\sqrt 7 }}{{14}}\)
Xét ∆ABH có: \(A{H^2} = A{B^2} + B{H^2} - 2.AB.BH.cos\widehat B = \frac{{108}}{{25}} \Rightarrow AH = \frac{{6\sqrt 3 }}{5}\).
Lời giải
Ta có: 0 < x < \(\frac{\pi }{2} \Rightarrow \left\{ {\begin{array}{*{20}{c}}{\sin x > 0}\\{\cos x > 0}\end{array}} \right.\)
+) \({\cos ^2}x + {\sin ^2}x = 1 \Leftrightarrow {\frac{2}{{\sqrt 5 }}^2} + {\sin ^2}x = 1\)
\( \Leftrightarrow {\sin ^2}x = \frac{1}{5} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\sin x = \frac{1}{{\sqrt 5 }}\left( {TM} \right)}\\{\sin x = - \frac{1}{{\sqrt 5 }}\left( L \right)}\end{array}} \right.\)
\( + )1 + {\cos ^2}x = \frac{1}{{{{\cos }^2}x}} \Leftrightarrow 1 + {\cos ^2}x = \frac{1}{{{{\left( {\frac{2}{{\sqrt 5 }}} \right)}^2}}}\)
\( \Leftrightarrow {\tan ^2}x = \frac{1}{4} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\tan x = \frac{1}{2}(TM)}\\{{\mathop{\rm t}\nolimits} = - \frac{1}{2}(L)}\end{array}} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.