Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có: A(1; –2), B(–2; 3), C(0; 4)
\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{\overrightarrow {AB} = \left( { - 3;5} \right)}\\{\overrightarrow {BC} = \left( {2;1} \right)}\\{\overrightarrow {CA} = \left( {1; - 6} \right)}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{AB = \sqrt {{{\left( { - 3} \right)}^2} + {5^2}} = \sqrt {34} }\\{BC = \sqrt {{2^2} + {1^2}} = \sqrt 5 }\\{CA = \sqrt {{1^2} + {{\left( { - 6} \right)}^2}} = \sqrt {37} }\end{array}} \right.\)
p = \(\frac{{AB + BC + CA}}{2} = \frac{{\sqrt {34} + \sqrt 5 + \sqrt {37} }}{2}\)
\( \Rightarrow {S_{ABC}} = \sqrt {p\left( {p - AB} \right)\left( {p - BC} \right)\left( {p - CA} \right)} = \frac{{13}}{2}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có AB = 2, AC = 3, \(\widehat A = 60^\circ \). Tính độ dài phân giác \(\widehat A\).
Câu 2:
Cho \(\cos x = \frac{2}{{\sqrt 5 }},0 < x < \frac{\pi }{2}\). Tính các giá trị lượng giác của góc x.
Câu 3:
Cho ∆ABC có \(\frac{5}{{\sin A}} = \frac{4}{{\sin B}} = \frac{3}{{\sin C}}\) và a = 10. Tính chu vi tam giác.
Câu 4:
Cho tana = 2. Tính giá trị của biểu thức \(C = \frac{{\sin a}}{{{{\sin }^3}a + 2{{\cos }^3}a}}\).
Câu 5:
Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?
Câu 6:
Chứng minh rằng: \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\).
về câu hỏi!